Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
基本信息
- 批准号:7591599
- 负责人:
- 金额:$ 18.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-25 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAccountingAnatomic ModelsAnatomyBiomechanicsBreathingChestClinicalClinical ResearchClinical TrialsComplicationDevelopmentDiagnostic ImagingDocumentationDoseElementsEnsureEnvironmentEvaluationExhalationFractionationFutureGoalsHandHospitalsImageImaging TechniquesImaging technologyInstitutionInvestigationLeadLinear ModelsLiverLungMalignant neoplasm of liverMethodsModalityModelingMorbidity - disease rateMotionNatureNormal tissue morphologyOrganOutcomePancreasPatientsPhysiologicalPositioning AttributePositron-Emission TomographyProcessProcess AssessmentPropertyProtocols documentationRadiation therapyReportingResearchResearch InfrastructureSchemeScientistSiteSliceSolutionsStagingSystemTechniquesTechnologyTestingTimeToxic effectTranslational ResearchTranslationsUncertaintyWorkbasecancer therapyclinical practiceclinically significantcone-beam computed tomographydesignearly experiencefollow-uphuman tissueimage registrationimaging modalityimprovedinnovationnovelprogramsresponsesimulationsingle photon emission computed tomographytooltreatment planningtreatment responsetumor
项目摘要
DESCRIPTION (provided by applicant): Advances in hypofractionated radiotherapy techniques have shown promise in the treatment of cancers that are conventionally associated with high morbidity and poor local control (e.g. lung and liver cancer). The small number of high dose treatment fractions requires superior precision and accuracy in target delineation, conformal treatment planning, and target localization at the time of treatment. Advances in imaging for target identification, volumetric imaging capabilities at treatment, and temporal imaging technologies, increase the capability of identifying the tumor during simulation, planning, and delivery. The spatial registration of this information, which is critical to correlate the unique information from each image, is limited by the lacking ability to integrate all available information into one comprehensive model of the patient. Early experience with dynamic multi-organ anatomical models for deformable registration has lead to the hypothesis that deformation technologies will improve the quality of treatment and lead to clinically significant improvements in tumor control and reduced toxicity. While testing this hypothesis will require a comprehensive program of multi-institution clinical trials, these methods need to be established and evaluated prior to deployment in clinical studies. This proposal sets out three specific aims to assure that the technologies are ready for translation into the clinical context, specifically in the lung, liver, and pancreas. In specific aim 1, dynamic multi-organ anatomical models will be developed and validated for the lung, liver, and pancreas. The accuracy of these models and linear interpolation between breathing states will be quantified. Heterogeneous material models will be optimized for the lung and liver. The influence of multi-organ deformable registration on the design and targeting of hypofractionated radiotherapy will be investigated in specific aim 2. The increase in accuracy of multi-modality treatment planning with deformable registration will be evaluated. The improvements in dosimetric accuracy with the inclusion of motion and deformation due to breathing will be quantified. The translation of this increase in accuracy into clinical dose effect models will be investigated. Specific aim 3 evaluates the impact of deformable registration on documentation and accounting of dose in hypofractionated radiotherapy. The improvements in accuracy of image guidance using deformable registration will be assessed. The increase in accuracy of the documentation of accumulated dose over treatment will be investigated, as well as the translation of this improvement in dose effect models. The goal of this research is to improve the accuracy and reduce the uncertainty in radiation therapy. Through the use of dynamic multi-organ anatomical models the wealth of information obtained from advanced imaging techniques will be combined into one, clear, model of the patient. This enhanced patient model will allow improved accuracy in the design and implementation of treatment.
描述(由申请人提供):大分割放射治疗技术的进步已显示出治疗通常与高发病率和局部控制不良相关的癌症(例如肺癌和肝癌)的前景。少量的高剂量治疗分次需要在治疗时靶区描绘、适形治疗计划和靶区定位方面具有极高的精度和准确度。用于目标识别的成像、治疗时的体积成像能力和时间成像技术的进步,提高了在模拟、计划和交付过程中识别肿瘤的能力。这一信息的空间配准对于关联每张图像的独特信息至关重要,但由于缺乏将所有可用信息整合到患者的一个综合模型中的能力而受到限制。用于变形配准的动态多器官解剖模型的早期经验得出这样的假设:变形技术将提高治疗质量,并导致肿瘤控制和毒性降低的临床显着改善。虽然检验这一假设需要一个全面的多机构临床试验计划,但这些方法需要在临床研究中部署之前建立和评估。该提案提出了三个具体目标,以确保这些技术准备好转化为临床环境,特别是肺、肝脏和胰腺。在具体目标 1 中,将为肺、肝脏和胰腺开发并验证动态多器官解剖模型。这些模型的准确性和呼吸状态之间的线性插值将被量化。异质材料模型将针对肺和肝脏进行优化。将在具体目标 2 中研究多器官变形配准对大分割放射治疗的设计和靶向的影响。将评估使用变形配准的多模态治疗计划的准确性的提高。由于呼吸引起的运动和变形,剂量测定精度的提高将被量化。将研究将这种准确性的提高转化为临床剂量效应模型。具体目标 3 评估变形配准对大分割放射治疗中剂量记录和计算的影响。将评估使用变形配准的图像引导准确性的改进。将研究治疗期间累积剂量记录的准确性的提高,以及剂量效应模型中这种改进的转化。这项研究的目标是提高放射治疗的准确性并减少不确定性。通过使用动态多器官解剖模型,从先进成像技术获得的大量信息将被整合到一个清晰的患者模型中。这种增强的患者模型将提高治疗设计和实施的准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristy Brock其他文献
Kristy Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristy Brock', 18)}}的其他基金
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10356348 - 财政年份:2022
- 资助金额:
$ 18.73万 - 项目类别:
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10636790 - 财政年份:2022
- 资助金额:
$ 18.73万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
9815803 - 财政年份:2019
- 资助金额:
$ 18.73万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10686184 - 财政年份:2019
- 资助金额:
$ 18.73万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10242684 - 财政年份:2019
- 资助金额:
$ 18.73万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10188461 - 财政年份:2018
- 资助金额:
$ 18.73万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10443572 - 财政年份:2018
- 资助金额:
$ 18.73万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
7771627 - 财政年份:2008
- 资助金额:
$ 18.73万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
7771627 - 财政年份:2008
- 资助金额:
$ 18.73万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
8015987 - 财政年份:2008
- 资助金额:
$ 18.73万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
7465782 - 财政年份:2008
- 资助金额:
$ 18.73万 - 项目类别: