Metabolic imaging comparisons of patient-derived models of renal cell carcinoma

肾细胞癌患者来源模型的代谢成像比较

基本信息

项目摘要

This year, ~62,000 Americans will be diagnosed with kidney cancer and more than 14,000 individuals will die from this disease. Nine of ten kidney cancers are renal cell carcinoma (RCC). To reduce mortality from RCC, improvements are needed at all stages, from diagnosis to prognosis to therapy. In response to the funding opportunity “Biological Comparisons in Patient-derived Models of Cancer (U01)”, we will compare four types of patient-derived models of RCC to investigate the relative authenticity of each as a preclinical model. The first will be patient-derived xenografts (PDXs), widely perceived as the most representative models of human pathophysiology. These have been previously established from a range of pathologic and clinical stages of RCC. The PDXs will serve as the “gold standard” to which to compare three PDX-derived models, including tissue slice cultures (TSCs), primary cell cultures, and xenografts generated from cell cultures. The biological comparison on which we focus is metabolism. Dysregulated metabolism, one of the hallmarks of cancer, is strongly implicated in the development and progression of RCC. Pleiotropic changes include dysregulation of oxygen sensing, energy sensing and nutrient sensing. In particular, high frequency mutations in VHL and FBP1 genes contribute to exhibition of the “Warburg effect” (an elevation of glycolysis in the presence of oxygen) in clear cell RCC, the major subtype of RCC, leading to increased production and excretion of lactate. Comparing metabolism among the four patient-derived models of RCC will capture the functional consequences of genetic, transcriptomic, environmental and other influences to provide a comprehensive picture of the phenotype of each model system. We will use hyperpolarized (HP) 13C magnetic resonance (MR), a remarkably sensitive molecular imaging technique, to surveil dynamic pathway-specific metabolic and physiologic processes in the patient-derived RCC models, yielding biologically and clinically relevant data. Aim 1 will identify the metabolic signature of each of 8 RCC PDXs by HP MR imaging and steady state metabolomic profiling. The metabolic data will be associated with genotypic, transcriptomic and immunotypic features to establish the phenotype of each PDX. In Aim 2, thin precision-cut tissue slices will be prepared from each of the 8 PDXs and placed in a NMR-compatible, 3D tissue culture bioreactor. The metabolic phenotype of the TSCs will be determined by HP MR and steady state studies and compared to that of the original PDXs, along with genetic, transcriptomic and immunohistologic features. Similar studies will be performed in Aim 3 with primary cell cultures derived from PDXs, and in Aim 4 with xenografts generated by the implantation in mice of PDX-derived cell cultures. In Aim 5, the final test of the four types of models will be a comparison of metabolic responses to the clinically relevant glutaminase inhibitor CB-839, which is currently entering clinical trials in RCC.
今年,约 62,000 名美国人将被诊断出患有肾癌,超过 14,000 人将被诊断患有肾癌。 十种肾癌中有九种是肾细胞癌 (RCC)。 RCC,从诊断到预后再到治疗的各个阶段都需要改进。 资助机会“患者衍生癌症模型的生物学比较(U01)”,我们将比较四个 类型的患者衍生肾细胞癌模型,以研究每种模型作为临床前模型的相对真实性。 第一个是患者来源的异种移植物(PDX),被广泛认为是最具代表性的模型 这些是先前根据一系列病理学和临床学建立的。 PDX 将作为比较三个 PDX 衍生模型的“黄金标准”, 包括组织切片培养物 (TSC)、原代细胞培养物和由细胞培养物产生的异种移植物。 我们关注的生物学比较是新陈代谢失调,这是其中之一。 癌症的标志,与 RCC 的发生和进展密切相关。 包括氧传感、能量传感和营养传感的失调,特别是高频。 VHL 和 FBP1 基因的突变有助于表现出“Warburg 效应”(糖酵解升高) 透明细胞肾细胞癌(RCC 的主要亚型)中存在氧气),从而导致产量增加和 比较四种源自患者的肾细胞癌模型的代谢情况将捕获乳酸的排泄。 遗传、转录组、环境和其他影响的功能后果,以提供 我们将使用超极化 (HP) 13C 磁性来全面了解每个模型系统的表型。 共振 (MR) 是一种独特灵敏的分子成像技术,用于监测动态通路特异性 源自患者的 RCC 模型中的代谢和生理过程,产生生物学和临床效果 相关数据。 目标 1 将通过 HP MR 成像和稳态识别 8 个 RCC PDX 中每一个的代谢特征 代谢组学分析。代谢数据将与基因型、转录组学和免疫型相关。 在目标 2 中,将制备薄的精密切割组织切片。 来自 8 个 PDX 中的每一个,并放置在 NMR 兼容的 3D 组织培养生物反应器中。 TSC 的表型将通过 HP MR 和稳态研究确定,并与 TSC 的表型进行比较 原始的 PDX 以及遗传、转录组和免疫组织学特征将进行类似的研究。 在目标 3 中使用源自 PDX 的原代细胞培养物进行,在目标 4 中使用由 PDX 产生的异种移植物进行 在目标 5 中,将 PDX 衍生细胞培养物植入小鼠体内,对四种模型进行最终测试。 与临床相关谷氨酰胺酶抑制剂 CB-839 的代谢反应比较,该抑制剂目前正在研究中 进入 RCC 临床试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kurhanewicz其他文献

John Kurhanewicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kurhanewicz', 18)}}的其他基金

High Field MRI For Optimized Translational 1H Multiparametric and Multinuclear Imaging Research
用于优化平移 1H 多参数和多核成像研究的高场 MRI
  • 批准号:
    10175910
  • 财政年份:
    2021
  • 资助金额:
    $ 62.63万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10669081
  • 财政年份:
    2020
  • 资助金额:
    $ 62.63万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10470345
  • 财政年份:
    2020
  • 资助金额:
    $ 62.63万
  • 项目类别:
Characterization of PDX SCNC prostate cancer metastatic murine models and development of associated research resources
PDX SCNC 前列腺癌转移小鼠模型的表征和相关研究资源的开发
  • 批准号:
    10533469
  • 财政年份:
    2020
  • 资助金额:
    $ 62.63万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10256057
  • 财政年份:
    2020
  • 资助金额:
    $ 62.63万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10737795
  • 财政年份:
    2020
  • 资助金额:
    $ 62.63万
  • 项目类别:
Preclinical imaging characterization and resource development of PDX SCNC prostate cancer murine models
PDX SCNC 前列腺癌小鼠模型的临床前成像特征和资源开发
  • 批准号:
    10378320
  • 财政年份:
    2020
  • 资助金额:
    $ 62.63万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10057724
  • 财政年份:
    2020
  • 资助金额:
    $ 62.63万
  • 项目类别:
Metabolic imaging comparisons of patient-derived models of renal cell carcinoma
肾细胞癌患者来源模型的代谢成像比较
  • 批准号:
    10227078
  • 财政年份:
    2017
  • 资助金额:
    $ 62.63万
  • 项目类别:
CLINICAL TRANSLATION OF HYPERPOLARIZED 13C-UREA FOR CANCER MR MOLECULAR IMAGING
超极化 13C-尿素用于癌症 MR 分子成像的临床转化
  • 批准号:
    10116302
  • 财政年份:
    2017
  • 资助金额:
    $ 62.63万
  • 项目类别:

相似海外基金

Detection of Emergent Mechanical Properties of Biologically Complex Cellular States
生物复杂细胞状态的紧急机械特性的检测
  • 批准号:
    10832871
  • 财政年份:
    2023
  • 资助金额:
    $ 62.63万
  • 项目类别:
Prohibiting Cell Death in Human Keratocytes: New Insights for Non-surgical Keratoconus Treatment
抑制人角膜细胞的细胞死亡:非手术圆锥角膜治疗的新见解
  • 批准号:
    10720431
  • 财政年份:
    2023
  • 资助金额:
    $ 62.63万
  • 项目类别:
Molecular Characterization of Anti-Tumor Activity Mediated by Extracellular Vesicles Derived from Natural Killer Cells
自然杀伤细胞来源的细胞外囊泡介导的抗肿瘤活性的分子表征
  • 批准号:
    10587355
  • 财政年份:
    2023
  • 资助金额:
    $ 62.63万
  • 项目类别:
Synergistic combination of Proteolysis Targeting Chimera with a translational formulation for the treatment of intractable lung carcinoma
蛋白水解靶向嵌合体与转化制剂的协同组合用于治疗难治性肺癌
  • 批准号:
    10580447
  • 财政年份:
    2022
  • 资助金额:
    $ 62.63万
  • 项目类别:
Microcalcifications in Atherosclerotic Plaque
动脉粥样硬化斑块中的微钙化
  • 批准号:
    10411607
  • 财政年份:
    2022
  • 资助金额:
    $ 62.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了