Roles of endothelial tensins
内皮张力蛋白的作用
基本信息
- 批准号:9419176
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsBindingBiochemistryBiologicalBlindnessBlood VesselsCell AdhesionCell Culture TechniquesCell ProliferationCellsCellular biologyClinicalComplexConfocal MicroscopyCuesCultured CellsCytoplasmic TailCytoskeletonDevelopmentDifferentiated GeneDiseaseEndothelial CellsEnvironmentExtracellular MatrixFamilyFamily memberFluorescence MicroscopyFocal AdhesionsGene ExpressionGeneticGoalsGrowth and Development functionImpairmentIn VitroIntegrinsKnockout MiceLeadLinkMalignant NeoplasmsMediatingMicrofilamentsMolecularMolecular BiologyMusN-terminalPTB DomainPatternPhenotypePhosphotyrosinePlayProcessProteinsReportingResearch DesignRheumatoid ArthritisRoleSignal PathwaySignal TransductionSiteStructureSubcellular structureSystemTestingTherapeuticTissuesTubeTyrosineWound Healingangiogenesiscell motilitycell typediabeticextracellularin vivoinnovationinsightinterdisciplinary approachmembermigrationmouse modelnovelreceptorresponsespatiotemporaltensin
项目摘要
Abstract
The goal of the proposed studies is to understand the signaling transduction mechanism governing
angiogenesis, an important process in growth and development of tissues, as well as in wound healing
processes. It also occurs in diseases, such as cancer, diabetic blindness, and rheumatoid arthritis. In this
project, we focus on the roles and mechanisms of tensin signaling in endothelial cells during angiogenesis. The
tensin family plays critical roles in organizing the subcellular structure and mediating signaling transductions at
focal adhesions, which are the transmembrane structures linking the extracellular matrix to the cytoskeleton.
The four members of tensin (tensin1, tensin2, tensin3, and cten) bind to the cytoplasmic tails of integrin
through their PTB (phosphotyrosine-binding) domains and interact with actin filaments (except cten) via their
N-terminal regions, allowing tensins to bridge the actin cytoskeleton to integrin receptors. In addition, tensins
contain an SH2 (Src homology 2) domain that interacts with tyrosine-phosphorylated as well as non-
phosphorylated proteins and form signaling complexes at focal adhesions. Our recent studies using knockout
mice showed that lack of tensin1 impairs tube formation activities in endothelial cells and angiogenic processes
in mice, indicating critical involvements of tensins in angiogenesis. However, not all tensins play similar roles in
cellular activities. We found that tensin1 and tensin2 promote endothelial cell migration, a critical step during
angiogenesis, whereas tensin3 suppresses it. Why highly homologous tensins exert opposite biological
activities? By using fluorescent-tagged tensins and live-cell confocal microscopy, we observed that tensins
show different spatiotemporal localization patterns in migrating cells. These findings lead us to investigate the
roles and regulatory mechanisms of tensins in angiogenesis. We hypothesize that tensins regulate
angiogenesis through their common and unique roles, which are dictated by their spatiotemporal localizations
and associated molecules, in endothelial cell adhesion, migration, and vascular lumen formation. Three
specific aims are proposed to (Aim 1) determine the primary control of spatiotemporal localizations of tensins
during in vitro tube formation; (Aim 2) establish the roles and mechanisms of tensins in regulating endothelial
cell tube formation; and (Aim 3) investigate the functions and regulatory mechanisms of tensins in
angiogenesis using knockout mice. Our research design is innovative because it probes novel and distinct
functions of tensins in endothelial cells, and employs a multidisciplinary approach that integrates biochemistry,
cell and molecular biology, live-cell fluorescence microscopy, cell culture and mouse models to understand the
roles of tensins in angiogenesis. This project has very high clinical and translational relevance that may offer
new insights for therapeutic applications to angiogenic related diseases.
抽象的
拟议研究的目标是了解控制信号转导机制
血管生成,组织生长和发育以及伤口愈合的重要过程
它也发生在癌症、糖尿病性失明和类风湿性关节炎等疾病中。
项目中,我们重点研究血管生成过程中内皮细胞中张力蛋白信号传导的作用和机制。
张力蛋白家族在组织亚细胞结构和介导信号转导方面发挥着关键作用
粘着斑,是将细胞外基质与细胞骨架连接起来的跨膜结构。
张力蛋白的四个成员(tensin1、tensin2、tensin3 和 cten)与 整合素的细胞质尾部结合
通过其 PTB(磷酸酪氨酸结合)结构域并通过其与肌动蛋白丝(cten 除外)相互作用
N 末端区域,允许张力蛋白将肌动蛋白细胞骨架与整合素受体桥接。
包含一个 SH2(Src 同源 2)结构域,可与酪氨酸磷酸化以及非磷酸化相互作用
我们最近的研究使用敲除技术在粘着斑处磷酸化蛋白质并形成信号复合物。
小鼠表明,缺乏tensin1会损害内皮细胞的管形成活性和血管生成过程
在小鼠中,表明张力蛋白在血管生成中发挥着关键作用。然而,并非所有张力蛋白都发挥相似的作用。
我们发现张力蛋白 1 和张力蛋白 2 促进内皮细胞迁移,这是细胞迁移过程中的关键步骤。
为什么高度同源的张力蛋白发挥相反的生物学作用?
通过使用荧光标记的张力蛋白和活细胞共聚焦显微镜,我们观察到张力蛋白
显示迁移细胞中不同的时空定位模式。
张力蛋白在血管生成中的作用和调节机制。
通过它们的共同和独特的作用来促进血管生成,这是由它们的时空定位决定的
以及相关分子在内皮细胞粘附、迁移和血管腔形成中的作用。
提出了具体目标(目标 1)确定张力蛋白时空定位的主要控制
(目标 2)建立张力蛋白在调节内皮细胞中的作用和机制
细胞管形成;和(目标 3)研究张力蛋白的功能和调节机制
我们的研究设计是创新的,因为它探索了新颖且独特的方法。
内皮细胞中张力蛋白的功能,并采用整合生物化学的多学科方法,
细胞和分子生物学、活细胞荧光显微镜、细胞培养和小鼠模型,以了解
张力蛋白在血管生成中的作用该项目具有非常高的临床和转化相关性,可能会提供帮助。
血管生成相关疾病的治疗应用的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SU HAO LO其他文献
SU HAO LO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SU HAO LO', 18)}}的其他基金
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of synapse development by small GTPase cascades in Caenorhabditis elegans
秀丽隐杆线虫中小 GTP 酶级联对突触发育的调节
- 批准号:
10735077 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Molecular Mechanisms Underlying Cytoneme Formation by Sonic Hedgehog-Producing Cells
Sonic Hedgehog 产生细胞形成细胞因子的分子机制
- 批准号:
10678288 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
The Role of Sensory Receptors in Angelman Syndrome
感觉感受器在天使综合症中的作用
- 批准号:
10630683 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
The role of biomolecular condensates in regulating the cytoskeleton.
生物分子缩合物在调节细胞骨架中的作用。
- 批准号:
10751631 - 财政年份:2023
- 资助金额:
$ 39.25万 - 项目类别:
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10680611 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别: