Prenatal exposure to traffic emissions and incident asthma in a birth cohort
出生队列中的产前交通尾气暴露和哮喘事件
基本信息
- 批准号:9132282
- 负责人:
- 金额:$ 7.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-25 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:8 year oldAccountingAddressAgeAirAir PollutionAnimalsAsthmaBirthCaliberCarbonCarbon MonoxideCensusesCharacteristicsChildChildhoodChildhood AsthmaChronic DiseaseCommunitiesDataData QualityData SetDevelopmentDiagnosisDiesel ExhaustEducationEnvironmentEnvironmental ExposureEpidemiologic StudiesEpidemiologyEthnic OriginEtiologyExposure toFundingHealthIncidenceIndividualInvestmentsJointsLifeLinkLocationLungMaternal ExposureMedical HistoryMeteorologyModelingMorbidity - disease rateMothersNeighborhoodsNitrogen OxidesOutcomeParticulate MatterPatternPhenotypePlayPollutionPopulationPovertyPregnancyPrevalencePublic HealthRaceRecording of previous eventsReportingResearchResearch PersonnelResidential MobilityResolutionRiskRisk FactorsRoleSchool-Age PopulationSocioeconomic FactorsSourceStagingTimeUncertaintyambient air pollutioncohortdesignenvironmental tobacco smoke exposurefollow-uphealth datainfancyland usemetermodels and simulationmodifiable risknoveloffspringparticlepollutantprenatalprenatal exposurepublic health relevanceresearch studyresidencetrafficking
项目摘要
DESCRIPTION (provided by applicant): There is growing evidence that the prenatal environment plays a role in the etiology of childhood asthma. Epidemiologic evidence suggests that children who develop asthma by school age already have 40% of their associated lung deficit at birth, and experimental studies in animals demonstrate that prenatal exposures to tobacco smoke, diesel exhaust, and other combustion-related particles can induce asthma in the offspring. The proposed research seeks to investigate the effect of exposure to ambient air pollution from traffic emissions during pregnancy on asthma incidence in childhood. We will study a well-characterized historical birth cohort of 19,169 mother-child pairs from Kaiser Permanente Georgia, a population with a high burden of asthma currently being studied as part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE), an EPA-funded Clean Air Research Center. Daily spatially-resolved concentrations of nitrogen oxides (NOx), carbon monoxide (CO), particulate matter <2.5 micrometers in diameter (PM2.5), and PM2.5 elemental carbon will be assigned to each maternal address using a novel Bayesian hierarchical approach recently developed by SCAPE researchers. Calibrated Community Multi-scale Air Quality Model (CMAQ) simulations at 4 kilometer grid resolution are downscaled to 250 meter grid resolution using a Bayesian space- time downscaler model that incorporates additional fine-scale traffic emissions data, land-use information and meteorology. The unified approach enables the propagation of exposure estimation uncertainty from all sources through the epidemiologic models. Using comprehensive longitudinal medical histories on the children in the cohort we will assess prenatal concentrations of traffic pollutants in relation to incident asthma by 2, 4, 6, and
8 years of age, including subanalyses restricted to asthma cases with evidence of continued morbidity at each follow-up age. We will also estimate the effect of cumulative exposures for the prenatal period through the first year of life taking into account possible synergistic effects between exposure windows; estimate the joint effects of multiple traffic-related pollutants; and conduct an in-depth assessment of confounding by individual-level and contextual socioeconomic factors. Our access to complete maternal residence information during the prenatal period will allow us to characterize patterns of residential mobility during pregnancy for
a large contemporary U.S. cohort and estimate impacts of this mobility on exposure estimation. These results will be relevant to the design and interpretation of a broad range of epidemiologic studies relying on residence location at the time of birth to assign spatially-varying exposures during pregnancy. By leveraging previously collected health data and novel air quality models that integrate multiple sources of air quality information we will be able to efficiently investigae the study questions and advance our understanding of modifiable risk factors for asthma, the most common chronic disease of childhood.
描述(由申请人提供):越来越多的证据表明,产前环境在儿童哮喘的病因学中发挥着重要作用。流行病学证据表明,学龄期患哮喘的儿童在出生时已有 40% 的相关肺功能缺陷。对动物的研究表明,产前接触烟草烟雾、柴油机尾气和其他与燃烧相关的颗粒会诱发后代哮喘。拟议的研究旨在调查怀孕期间接触交通排放造成的环境空气污染对哮喘发病率的影响。童年。我们将研究来自佐治亚州 Kaiser Permanente 的 19,169 对母子的历史出生队列,该人群是哮喘高发人群,目前正在作为东南空气污染和流行病学中心 (SCAPE) 的一部分进行研究,该中心是一个 EPA-资助的清洁空气研究中心。氮氧化物 (NOx)、一氧化碳 (CO)、直径 <2.5 微米的颗粒物的每日空间分辨浓度。 (PM2.5) 和 PM2.5 元素碳将使用 SCAPE 研究人员最近开发的新型贝叶斯分层方法分配给每个母亲地址,校准社区多尺度空气质量模型 (CMAQ) 模拟在 4 公里网格分辨率下被缩小。使用贝叶斯时空缩小器模型将网格分辨率提高到 250 米,该模型结合了额外的精细交通排放数据、土地利用信息和气象学,从而能够传播暴露估计的不确定性。通过流行病学模型分析所有来源。利用队列中儿童的全面纵向病史,我们将评估与哮喘事件相关的产前交通污染物浓度。
8 岁,包括仅限于哮喘病例的亚分析,并有证据表明每个随访年龄持续发病。我们还将估计从产前到出生第一年的累积暴露的影响,同时考虑暴露之间可能的协同效应。窗口;估计多种与交通相关的污染物的联合影响;并对个人层面和背景社会经济因素的混杂进行深入评估。我们获得完整的产前居住信息将使我们能够描述模式。住宅的怀孕期间的活动能力
当代美国的一个大型队列,并估计这种流动性对暴露估计的影响,这些结果将与依赖出生时的居住地点来分配怀孕期间空间变化的暴露的广泛流行病学研究的设计和解释相关。通过利用之前收集的健康数据和整合多个空气质量信息来源的新型空气质量模型,我们将能够有效地调查研究问题,并加深我们对哮喘(儿童最常见的慢性疾病)的可改变危险因素的理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Associations of mobile source air pollution during the first year of life with childhood pneumonia, bronchiolitis, and otitis media.
生命第一年移动源空气污染与儿童肺炎、细支气管炎和中耳炎的关联。
- DOI:
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Kennedy, Caitlin M;Pennington, Audrey Flak;Darrow, Lyndsey A;Klein, Mitchel;Zhai, Xinxin;Bates, Josephine T;Russell, Armistead G;Hansen, Craig;Tolbert, Paige E;Strickland, Matthew J
- 通讯作者:Strickland, Matthew J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lyndsey Darrow其他文献
Lyndsey Darrow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lyndsey Darrow', 18)}}的其他基金
Prenatal, Intrapartum and Infant Antibiotic Use and Atopic Diseases in Childhood
产前、产时和婴儿抗生素的使用和儿童期特应性疾病
- 批准号:
9220712 - 财政年份:2016
- 资助金额:
$ 7.1万 - 项目类别:
Prenatal, Intrapartum and Infant Antibiotic Use and Atopic Diseases in Childhood
产前、产时和婴儿抗生素的使用和儿童期特应性疾病
- 批准号:
9438474 - 财政年份:2016
- 资助金额:
$ 7.1万 - 项目类别:
Ambient air pollution and respiratory outcomes in children ages 0-4
环境空气污染与 0-4 岁儿童的呼吸系统结果
- 批准号:
7875341 - 财政年份:2010
- 资助金额:
$ 7.1万 - 项目类别:
Ambient air pollution and respiratory outcomes in children ages 0-4
环境空气污染与 0-4 岁儿童的呼吸系统结果
- 批准号:
8056137 - 财政年份:2010
- 资助金额:
$ 7.1万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Technology and digital media's influence on preschool children's sleep and weight status
技术和数字媒体对学龄前儿童睡眠和体重状况的影响
- 批准号:
10532290 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
Technology and digital media's influence on preschool children's sleep and weight status
技术和数字媒体对学龄前儿童睡眠和体重状况的影响
- 批准号:
10701895 - 财政年份:2022
- 资助金额:
$ 7.1万 - 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
- 批准号:
10443542 - 财政年份:2021
- 资助金额:
$ 7.1万 - 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
- 批准号:
10596139 - 财政年份:2021
- 资助金额:
$ 7.1万 - 项目类别: