Global Deep Learning Initiative to Understand Outcomes in Major Depression
全球深度学习计划了解重度抑郁症的结果
基本信息
- 批准号:10735255
- 负责人:
- 金额:$ 66.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdverse effectsAntidepressive AgentsArtificial IntelligenceAustraliaBiological MarkersBrainBrain DiseasesBrain MappingBrain imagingBrain regionChinaChineseClassificationClinicalClinical DataClinical assessmentsCodeDataData SetDiagnosisDiagnosticDiffusionDiseaseDisease remissionDouble-Blind MethodElectroconvulsive TherapyEnsureEthicsFunctional Magnetic Resonance ImagingGermanyGoalsGraphHamilton Rating Scale for DepressionHybridsIndividualInternationalInterventionLearningLegalMRI ScansMagnetic Resonance ImagingMajor Depressive DisorderMapsMeasuresMental DepressionMethodsModelingMontgomery and Asberg depression rating scaleMorbidity - disease rateMultimodal ImagingNeurosciencesOutcomeParticipantPatientsPatternPerformancePersonsPharmaceutical PreparationsPharmacotherapyPhenotypePopulationPrediction of Response to TherapyPredictive FactorPrivacyProceduresPsychiatryPsychotherapyRandomized, Controlled TrialsRecoveryResearchResearch PersonnelSamplingScanningScreening procedureSeveritiesStructureSurfaceSymptomsTestingTrainingTreatment ProtocolsTreatment outcomeUnited States National Institutes of HealthWorkalternative treatmentartificial intelligence methodbiobankbiosignaturebrain basedbrain magnetic resonance imagingclinical predictorscohortcombatconvolutional neural networkdata exchangedata harmonizationdeep learningdeep learning modeldepressive symptomsdisabilitydiverse dataexperiencefeature extractionimaging modalityimprovedinnovationinterestlearning strategymultimodal neuroimagingmultimodalityneuroimagingneuromechanismnoveloutcome predictionprecision medicinepredicting responsepredictive modelingpredictive signaturerepetitive transcranial magnetic stimulationresponsetooltransfer learningtreatment durationtreatment effecttreatment responsetreatment-resistant depressionweb site
项目摘要
ABSTRACT
Major depressive disorder (MDD) is the leading cause of disability worldwide, and around half of MDD patients
have treatment-resistant depression. The use and clinical benefit of rTMS have escalated greatly in recent years.
As only 40-50% of patients respond to current standard rTMS, there is great interest in predicting which patients
are likely to respond, what brain features best predict response, and how these features relate to the core
biosignatures of MDD. To address this, and responding to NIH’s call for Precision Medicine approaches, our
Global Deep Learning Initiative to Understand Outcomes in Major Depression unites international leaders in
MDD and rTMS research, neuroimaging, and AI to identify generalizable predictors of rTMS response, and
assess how they relate to brain biomarkers of MDD. Two major innovations are proposed. First, we use novel
deep learning methods, based on convolutional neural networks, to extract predictive features from multimodal
brain images (sMRI, DTI, and rsfMRI); tactics applied in whole-brain and surface-based mapping of brain function
and structure, DVAEs for feature extraction, and transfer learning (to learn from auxiliary datasets and tasks) will
distill predictive features while protecting individual privacy. CNNs trained on multimodal brain maps for our
predictive tasks will distill additional layers of information that have not yet been fully exploited in MDD research,
to better predict clinical status and treatment response. Second, our worldwide ENIGMA-MDD network will
provide diverse test data from globally representative populations, to ensure that our predictive models do not
break down when tested on diverse data. ENIGMA’s harmonized extraction of brain measures across worldwide
cohorts will enhance rigor and ensure that analyses are well-powered and consistently performed. We include
an important partnership with REST-meta-MDD, a Chinese consortium collecting multimodal imaging data from
patients with MDD, to test the generalizability of our predictive models. The likely outcome of our work is a set
of pre-screening tools to predict who will respond best to rTMS, and a deeper understanding of the brain
signatures of MDD that predict treatment outcomes following rTMS. All tools will be made public via NITRC and
ENIGMA websites, and will be tested across our ENIGMA network, guaranteeing impact of the work for large-
scale outcome prediction within and outside of MDD research.
抽象的
重度抑郁症 (MDD) 是全球残疾的主要原因,大约一半的 MDD 患者
近年来,rTMS 的使用和临床益处大大增加。
由于只有 40-50% 的患者对当前标准 rTMS 有反应,因此人们对预测哪些患者有很大兴趣
可能会做出反应,哪些大脑特征最能预测反应,以及这些特征与核心有何关系
为了解决这个问题,并响应 NIH 对精准医学方法的号召,我们研究了 MDD 的生物特征。
旨在了解严重抑郁症结果的全球深度学习计划联合国际领导人
MDD 和 rTMS 研究、神经影像学和人工智能,以确定 rTMS 反应的通用预测因子,以及
评估它们与 MDD 的大脑生物标志物的关系。首先,我们使用新颖的方法。
基于卷积神经网络的深度学习方法,从多模态中提取预测特征
脑图像(sMRI、DTI 和 rsfMRI);应用于全脑和基于表面的脑功能映射的策略
和结构,用于特征提取的 DVAE 和迁移学习(从辅助数据集和任务中学习)将
提取预测特征,同时保护个人隐私,并为我们的多模态脑图训练 CNN。
预测任务将提炼出尚未在 MDD 研究中充分利用的额外信息层,
其次,我们的全球 ENIGMA-MDD 网络将更好地预测临床状态和治疗反应。
提供来自全球代表性人群的多样化测试数据,以确保我们的预测模型不会
在对不同数据进行测试时,ENIGMA 的大脑测量协调提取结果出现了问题。
队列将增强 ligor 并确保分析始终有效且执行。
与 REST-meta-MDD 建立了重要的合作伙伴关系,REST-meta-MDD 是一个中国联盟,收集多模态成像数据
患有 MDD 的患者,以测试我们的预测模型的普遍性 我们工作的可能结果是一组。
预筛选工具来预测谁对 rTMS 反应最好,并更深入地了解大脑
预测 rTMS 治疗结果的 MDD 签名所有工具都将通过 NITRC 和 NITRC 公开。
ENIGMA 网站,并将在我们的 ENIGMA 网络上进行测试,保证工作对大范围的影响
MDD 研究内外的规模结果预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roberto Goya-Maldonado其他文献
Roberto Goya-Maldonado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 66.38万 - 项目类别:
Early Life Determinants of Child Health: A New Denver-Based Cohort
儿童健康的早期决定因素:丹佛的一个新队列
- 批准号:
10745631 - 财政年份:2023
- 资助金额:
$ 66.38万 - 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
- 批准号:
10742197 - 财政年份:2023
- 资助金额:
$ 66.38万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 66.38万 - 项目类别:
CranioRate: An imaging-based, deep-phenotyping analysis toolset, repository, and online clinician interface for craniosynostosis
CranioRate:基于成像的深度表型分析工具集、存储库和在线临床医生界面,用于颅缝早闭
- 批准号:
10568654 - 财政年份:2023
- 资助金额:
$ 66.38万 - 项目类别: