Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
基本信息
- 批准号:10727054
- 负责人:
- 金额:$ 12.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP HydrolysisAccelerationAddressAlzheimer&aposs DiseaseAmino AcidsAmyloidArchitectureBindingBiochemicalBiological AssayCell AgingCell SurvivalCell physiologyCellular StressCollaborationsCommunicationComplexCoupledCouplingCryoelectron MicroscopyCrystallizationCytoprotectionDiseaseEventFamilyFilamentFluorescence Resonance Energy TransferFutureGoalsHeat shock proteinsHydrolysisLifeMass Spectrum AnalysisMechanicsMediatingMethodsMitochondriaModelingMolecular ChaperonesMolecular ConformationMotorNatureNeurodegenerative DisordersParkinson DiseasePathway interactionsPeptide HydrolasesProteinsProteolysisPublic HealthResolutionRotationScienceSiteSpecific qualifier valueStressStructureSubstrate InteractionSurfaceSystemVariantWorkYeastsalpha synucleinamyloid formationbiological adaptation to stressbiophysical techniquescrosslinkgenetic regulatory proteingrasphuman diseaseimprovedinsightmembermulticatalytic endopeptidase complexmutantnovel strategiespolypeptidepreventprotein aggregationprotein misfoldingprotein protein interactionproteostasissingle-molecule FRETsup35therapeutic targetunfoldaseyeast prion
项目摘要
PROJECT SUMMARY/ABSTRACT
Protein disaggregation and turnover are essential for protein homeostasis (proteostasis) and cell viability.
Malfunction occurs during cell stress and aging, accelerating deleterious protein aggregation and amyloid
formation. Improved mechanistic understanding is critical for determining how proteostasis pathways fail and for
identifying therapeutic targets in preventing neurodegenerative disease and other protein mis-folding diseases.
Heat shock protein (Hsp) 100 members of the conserved AAA+ family serve critical functions in all life as protein
unfoldases and disaggregases. They form hexameric, ATP-driven machines that catalyze the translocation of
polypeptide substrates through a central channel. The unfolded proteins are then refolded by Hsp molecular
chaperones or degraded by an associated protease, such as in the case of the proteasome.
Challenges in achieving structures of functional states have led to conflicting mechanistic models across
the AAA+ superfamily. Focusing on conserved Hsp100 members, yeast Hsp104 and the bacterial Clp proteins,
we have overcome these challenges by using cryo-electron microscopy to determine structures of biochemically
defined, functional complexes. We determined the first substrate-bound structures of a AAA+ disaggregase
(Hsp104) in distinct translocation states and discovered these machines operate by a rotary mechanism involving
precise substrate gripping and release states and a two amino acid translocation step. Since our last submission
of this application, we have determined multiple structures of the ClpAP AAA+ protease undergoing active
substrate unfolding and proteolysis Together our discoveries reveal a new paradigm for how AAA+s
mechanically unfold substrates. The next major question to address is: How is the translocation mechanism
(which is now considered highly conserved among AAA+s) coupled to specific cellular functions? Our long-term
goal is to determine how translocation and unfolding are precisely tuned for different proteostasis and cell stress
response functions. The objective for this application is to identify key allosteric control mechanisms that couple
ATP-driven translocation to substrate recognition, unfolding and degradation. Here we will: (SA1) Determine
mechanisms of protein unfolding and proteolysis by the ClpAP “bacterial proteasome” complex; (SA2) Determine
how Hsp104 interacts with and disaggregates native substrates and amyloids; and (SA3) Determine how the
Hsp70 chaperone collaborates with Hsp104 to promote substrate loading. At the completion of this work we will
identify conformational networks and protein:protein interactions that define how the core translocation cycle
connects allosterically to specify distinct cellular functions of these AAA+ machines.
项目概要/摘要
蛋白质解聚和周转对于蛋白质稳态(蛋白质稳态)和细胞活力至关重要。
细胞应激和衰老过程中会发生功能障碍,加速有害蛋白质聚集和淀粉样蛋白
提高对机制的理解对于确定蛋白质稳态途径如何失效以及如何发挥作用至关重要。
预防神经退行性疾病和其他蛋白质错误折叠疾病的治疗目标。
热休克蛋白 (Hsp) 保守 AAA+ 家族的 100 个成员作为蛋白质在所有生命中发挥着关键功能
它们形成六聚体、ATP驱动的机器,催化易位
然后,未折叠的蛋白质通过 Hsp 分子重新折叠。
分子伴侣或被相关蛋白酶降解,例如在蛋白酶体的情况下。
实现功能状态结构的挑战导致了跨领域的相互冲突的机械模型
AAA+ 超家族,重点关注保守的 Hsp100 成员、酵母 Hsp104 和细菌 Clp 蛋白,
我们通过使用冷冻电子显微镜来确定生化结构,克服了这些挑战
我们确定了 AAA+ 解聚酶的第一个底物结合结构。
(Hsp104)处于不同的易位状态,并发现这些机器通过旋转机构运行,涉及
自我们上次提交以来,精确的底物抓取和释放状态以及两个氨基酸易位步骤。
在本申请中,我们确定了 ClpAP AAA+ 蛋白酶的多种结构,这些结构经历了活性
底物展开和蛋白水解 我们的发现共同揭示了 AAA+ 的新范例
机械展开基质的下一个要解决的主要问题是:易位机制如何。
(现在被认为在 AAA+ 中高度保守)与特定的细胞功能相结合?
目标是确定如何针对不同的蛋白质稳态和细胞应激精确调整易位和展开
该应用的目的是确定耦合的关键变构控制机制。
ATP 驱动的易位至底物识别、解折叠和降解: (SA1) 确定。
ClpAP“细菌蛋白酶体”复合物的蛋白质解折叠和蛋白水解机制(SA2)确定;
Hsp104 如何与天然底物和淀粉样蛋白相互作用并分解;以及 (SA3) 确定如何
Hsp70 伴侣与 Hsp104 合作促进底物加载。完成这项工作后,我们将。
识别构象网络和蛋白质:定义核心易位循环的蛋白质相互作用
变构连接以指定这些 AAA+ 机器的独特细胞功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Ryland Southworth其他文献
Daniel Ryland Southworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Ryland Southworth', 18)}}的其他基金
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10439743 - 财政年份:2021
- 资助金额:
$ 12.53万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10594563 - 财政年份:2021
- 资助金额:
$ 12.53万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10219751 - 财政年份:2021
- 资助金额:
$ 12.53万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10646105 - 财政年份:2021
- 资助金额:
$ 12.53万 - 项目类别:
Project 3: Structural basis of amyloid formation and chaperone-mediated turnover
项目 3:淀粉样蛋白形成和分子伴侣介导的周转的结构基础
- 批准号:
10377430 - 财政年份:1997
- 资助金额:
$ 12.53万 - 项目类别:
Project 3: Structural basis of amyloid formation and chaperone-mediated turnover
项目 3:淀粉样蛋白形成和分子伴侣介导的周转的结构基础
- 批准号:
10601012 - 财政年份:1997
- 资助金额:
$ 12.53万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Translation, targeting, and decay of yeast nonsense-containing mRNAs
含有无义酵母的 mRNA 的翻译、靶向和衰变
- 批准号:
10550367 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Mechanisms of Protein Disaggregation and Turnover by AAA+ Chaperones
AAA 分子伴侣的蛋白质解聚和周转机制
- 批准号:
10594563 - 财政年份:2021
- 资助金额:
$ 12.53万 - 项目类别:
Innovative Native Ion Mobility Approaches for Transformational Measurements in Structural Biology
用于结构生物学转化测量的创新天然离子淌度方法
- 批准号:
10689746 - 财政年份:2020
- 资助金额:
$ 12.53万 - 项目类别:
Structural-Functional Basis of Actin Cytoskeleton Dynamics
肌动蛋白细胞骨架动力学的结构功能基础
- 批准号:
10658930 - 财政年份:2005
- 资助金额:
$ 12.53万 - 项目类别:
CaMKII and IP3-Mediated Signaling in Cardiac Myocytes
心肌细胞中 CaMKII 和 IP3 介导的信号传导
- 批准号:
8114847 - 财政年份:
- 资助金额:
$ 12.53万 - 项目类别: