Effects of Intracortical Microstimulation on Neural Activity in Distant Cortical Regions
皮质内微刺激对远端皮质区域神经活动的影响
基本信息
- 批准号:10722343
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnteriorAreaAuditoryAutomobile DrivingBrainBrain regionCentral Nervous SystemCerebral cortexCochlear ImplantsCognitiveCohort StudiesCraniocerebral TraumaCuesData AnalysesData SetDevicesDistalDistantDorsalElectric StimulationElectrodesExhibitsFeedbackFire - disastersForelimbImplantInstructionKnowledgeLaboratoriesLearningMicroelectrodesModalityMonkeysMotorMotor CortexMotor NeuronsMovementMuscleNeuronal PlasticityNeuronsOutcomeParietalParietal LobePatientsPatternPerformancePhysiologic pulsePositioning AttributeProcessProtocols documentationRadialRecordsSensorySiteSomatosensory CortexSpinalStimulusStrokeSynapsesTechniquesTechnologyTestingTimeTrainingTranslatingUpper ExtremityVertebral columnVisualWorkbrain machine interfacedesignelectrical microstimulationexperimental studygray matterimprovedinsightmetermicrostimulationmotor controlnervous system disorderneuralneuroprosthesispreventsensory cortexsensory neuropathysimulationsomatosensorysuccess
项目摘要
Electrical stimulation has been shown to be a useful technique for delivering information to the brain
from brain-machine interfacing technology. The brain is remarkably capable of learning to interpret such
information, most notably demonstrated by the success of cochlear implants. Learning to translate stimulation
into useful information can be attributed to neural plasticity, yet little is known about the relationship between
localized electrical stimulation and subsequent effects on brain regions distant from the simulation site. In the
specific context of stimulating cortical gray matter, or intracortical microstimulation (ICMS), a common
assumption is that post-stimulation effects remain localized to a small volume of neurons near the stimulating
electrode. However, there is evidence that suggests the effects can spread substantial distances.
Prior work in my lab has shown that subjects can learn to interpret ICMS delivered to four different
electrodes in the primary somatosensory cortex (S1) as instructions to perform four different arbitrarily-
assigned movements. My preliminary studies using that dataset suggest that ICMS delivered in S1 can have
two types of effects on neurons in distant cortical areas: 1) ICMS pulses can directly elicit spikes in neurons
from both ventral premotor cortex (PMv) and primary motor cortex (M1) – either antidromically,
monosynaptically, or oligosynaptically – which I term “direct driving”. 2) Other neurons not directly driven by the
ICMS pulses may nevertheless fire differently between trials instructing the same movements with only trains
of ICMS pulses versus with only visual cues, which I term “instruction-modality dependent modulation”. Thus,
the effects of ICMS may extend to parts of the cortical network more distant than previously appreciated.
I propose to investigate the effects of ICMS instructions for arbitrarily-associated movements delivered
in S1 on several distant cortical areas involved in motor control. Specifically, I will study effects in seven frontal
and parietal regions: pre-supplementary motor area, dorsal premotor cortex, ventral premotor cortex, rostral
primary motor cortex, caudal primary motor cortex, anterior intraparietal area, and dorsal posterior parietal
cortex. Aim I will examine which of those cortical areas contain neurons that are directly driven by ICMS pulses
delivered in S1. Aim II will examine which of those cortical areas contain neurons that show instruction-
modality dependent modulation. The proposed studies will show the extent to which ICMS in S1 modulates
distant parts of the cortical network, and how such modulation develops over time as subjects learn to use the
ICMS as instructions to perform arbitrarily-associated movements. That information can be used to design
inputs to cortex from brain-machine interfacing technology that is clearer to the subject and encourages
healthy plasticity to reduce cognitive demand during the training process. Those improvements serve to benefit
patients with diseases of the nervous system that can be treated with brain-machine interfacing technology
including stroke, sensory neuropathies, or head trauma.
电刺激已被证明是向大脑传递信息的有用技术
来自脑机接口技术的大脑非常有能力学习解释这种情况。
信息,最显着的是人工耳蜗植入的成功证明了学习翻译刺激。
转化为有用的信息可以归因于神经可塑性,但人们对两者之间的关系知之甚少。
在远离模拟部位的局部区域进行电刺激以及随后对大脑的影响。
刺激皮质灰质的特定环境,或皮质内微刺激(ICMS),一种常见的
假设刺激后效应仍然局限于刺激源附近的一小部分神经元
然而,有证据表明这种影响可以传播很远的距离。
我实验室之前的工作表明,受试者可以学会解释传递给四种不同的 ICMS
初级体感皮层(S1)中的电极作为执行四种不同任意操作的指令
我使用该数据集进行的初步研究表明,在 S1 中交付的 ICMS 可以具有指定的动作。
对远处皮质区域神经元的两种影响:1) ICMS 脉冲可以直接引起神经元尖峰
来自腹侧前运动皮层 (PMv) 和初级运动皮层 (M1) – 或者相反,
单突触或寡突触——我称之为“直接驱动”2)其他神经元不直接由神经元驱动。
然而,在仅使用火车指示相同运动的试验之间,ICMS 脉冲可能会发出不同的脉冲
ICMS 脉冲与仅视觉提示的比较,我将其称为“指令模式依赖调制”。
ICMS 的影响可能会延伸到比之前想象的更远的皮质网络部分。
我建议调查 ICMS 指令对所传递的任意相关运动的影响
具体来说,我将研究对七个额叶的影响。
和顶叶区域:前辅助运动区、背侧前运动皮层、腹侧前运动皮层、吻侧
初级运动皮质、尾侧初级运动皮质、前顶内区和背侧后顶叶
目标我将检查哪些皮质区域包含由 ICMS 脉冲直接驱动的神经元。
S1 中交付的内容将检查哪些皮质区域包含显示指令的神经元 -
拟议的研究将显示 S1 中 ICMS 的调节程度。
皮质网络的遥远部分,以及当受试者学习使用大脑皮层网络时,这种调制如何随着时间的推移而发展
ICMS 作为执行任意关联运动的指令,该信息可用于设计。
通过脑机接口技术向皮层输入信息,该技术对受试者来说更加清晰并鼓励
健康的可塑性可以减少训练过程中的认知需求,这些改进有助于受益。
患有可通过脑机接口技术治疗的神经系统疾病的患者
包括中风、感觉神经病或头部外伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brandon Michael Ruszala其他文献
Brandon Michael Ruszala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brandon Michael Ruszala', 18)}}的其他基金
Effects of Intracortical Microstimulation on Neural Activity in Distant Cortical Regions
皮质内微刺激对远端皮质区域神经活动的影响
- 批准号:
10534805 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
相似国自然基金
蚕丝和家蚕前部丝腺纺丝液的原位超微结构研究
- 批准号:32302816
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑室旁核前部TGR5在慢性应激诱导的焦虑样行为中的作用及机制
- 批准号:82373860
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
家蚕前部丝腺特异表皮蛋白在角质层内膜构建及蚕丝纤维化中的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
谷氨酸能系统调节的前部岛叶皮层神经振荡在针刺缓解慢性疼痛中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模态影像学的视乳头区域微循环灌注评估及NAION发病机制研究
- 批准号:81800840
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Corticothalamic circuits mediating behavioral adaptations to unexpected reward omission
皮质丘脑回路介导对意外奖励遗漏的行为适应
- 批准号:
10734683 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Mechanisms and Functions of Cortical Activity to Restore Behavior
皮层活动恢复行为的机制和功能
- 批准号:
10737217 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
The Intimate Interplay Between Keratoconus, Sex Hormones, and the Anterior Pituitary
圆锥角膜、性激素和垂体前叶之间的密切相互作用
- 批准号:
10746247 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: