Neural circuit mechanisms of drug-context associations in the hippocampus
海马区药物关联的神经回路机制
基本信息
- 批准号:10723049
- 负责人:
- 金额:$ 15.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:Advanced DevelopmentAffectAnimal BehaviorAnimal ModelAssociation LearningBehavioralBrainBrain regionCellsClinicalCodeCognitionCognitiveColorCommunicationComputer ModelsDataDevelopmentDrug TargetingDrug usageExposure toGeneticGoalsHeadHippocampal FormationHippocampusImageImaging DeviceIndividualInterventionKetamineKnowledgeKnowledge acquisitionLabelLearningMapsMediatingMemoryMethodsModelingMolecularMorphineMusNatureNegative ReinforcementsNeuronsOpioidOutputPathologicPerceptionPharmaceutical PreparationsPositioning AttributePropertyPublic HealthResearchRetrievalRewardsRunningSpeedSubstance Use DisorderTestingTherapeuticTrainingWithdrawalcell typeconditioned place preferenceconditioningdrug cravingdrug relapsedrug rewarddrug seeking behaviordrug withdrawalhigh dimensionalityhuman modelin vivoin vivo imaginginsightmachine learning methodneuralneural circuitneural modelneuroimagingnovelnovel therapeuticsopioid withdrawalprogramsprolonged abstinencepsychostimulantresponseskill acquisitionsubstance use treatmenttoolvirus genetics
项目摘要
PROJECT ABSTRACT
Addictive drugs usurp the normal neural machinery for learning and memory to generate pathological cognition
that can lead to compulsive drug usage. One prominent example is re-exposure to a drug-associated
environmental context, which robustly induces drug relapse in both humans and animal models. The
hippocampal formation, which is critical for spatial and contextual learning, is well positioned to support the
encoding of this type of drug-context association. Despite decades of hippocampal studies on drug-evoked
molecular and cellular adaptations and drug-seeking behaviors, we still lack a clear understanding of which
hippocampal circuits are involved in acquiring and maintaining maladapted drug-context associations and how
neural dynamics in the hippocampus are transformed to support drug-seeking behavior. Moreover, there are no
interventions that specifically target the drug-associated memories to treat substance use disorders. Here, with
the proposed training in computational modeling for neural dynamics and the development of advanced genetic
and imaging tools, I aim to fill these knowledge gaps by elucidating the neural circuit mechanisms in the
hippocampus for drug-context associations and probing whether we can reverse this association using a
memory-based intervention. Preliminary data suggest opioid reward vs. withdrawal-mediated associative
learning have distinct effects on representing different spatial variables in CA1 neurons and ketamine was able
to reset the maladapted contextual representation to disrupt the retrieval of drug-associated memories. For Aim
1, I will investigate how drug-associated information alters the neural coding in the hippocampus for multiple
spatial variables that are critical for the perception of a given context. Using miniscope imaging in morphine
conditioned place preference/aversion, I will learn to build linear-nonlinear Poisson (LNP) models to reveal how
drug-context associations under positive vs. negative reinforcement affect the neural coding of CA1 for position,
head orientation, running speed and their conjunctions. For Aim 2, I will test the hypothesis that Ketamine
disrupts learned drug-context associations by restoring the maladapted representations of functional cell types
(e.g., place cells) to their normal state. I will acquire expertise on opioid withdrawal and investigate ketamine’s
effect on withdrawal-context associations by targeting memory reconsolidation and reveal the corresponding
change in neural dynamics of CA1. For Aim 3, I will elucidate neural circuit assembly and dynamics for coding
drug-associated contextual information in the subiculum, a major downstream target of the hippocampal CA1.
This study will leverage my training in Aim 1 and 2 to advance our understanding of the principles for processing
drug-associated information in the brain. Together, the proposed training and studies will not only help me to
establish an independent research program but also provide a mechanistic understanding of how hippocampal
neurons encode and represent drug-associated contextual information and shed light on developing novel
therapeutic treatments for substance use disorders.
项目摘要
成瘾药物侵占学习和记忆的正常神经机制,产生病态认知
一个突出的例子是重新接触与药物相关的药物。
环境背景,在人类和动物模型中都会强烈诱导药物复发。
海马体的形成对于空间和情境学习至关重要,它能够很好地支持
尽管对药物诱发的海马体进行了数十年的研究,但这种类型的药物与环境关联的编码。
分子和细胞适应以及药物寻求行为,我们仍然缺乏清楚的了解
海马回路参与获取和维持不适应的药物环境关联以及如何
海马体中的神经动力学发生转变以支持寻求药物的行为。
专门针对与药物相关的记忆来治疗药物滥用障碍的干预措施。
拟议的神经动力学计算模型培训和高级遗传学的发展
和成像工具,我的目标是通过阐明神经回路机制来填补这些知识空白
海马体进行药物与环境的关联,并探讨我们是否可以使用
基于记忆的干预措施表明阿片类药物奖励与戒断介导的联想干预。
学习对于代表 CA1 神经元的不同空间变量有明显的影响,氯胺酮能够
重置不适应的上下文表征,以破坏与药物相关的记忆的检索。
1,我将研究药物相关信息如何改变海马体中的多种神经编码
对给定环境的感知至关重要的空间变量。在吗啡中使用微型显微镜成像。
条件性地点偏好/厌恶,我将学习构建线性非线性泊松(LNP)模型来揭示如何
正强化和负强化下的药物-情境关联会影响 CA1 位置的神经编码,
对于目标 2,我将检验氯胺酮的假设。
通过恢复功能细胞类型的不适应表征来破坏习得的药物与背景的关联
(例如,将细胞)恢复到正常状态我将获得有关阿片类药物戒断的专业知识并研究氯胺酮的作用。
通过针对记忆重新巩固对戒断-情境关联的影响,并揭示相应的
CA1 神经动力学的变化 对于目标 3,我将阐明神经回路组装和编码动力学。
下托中与药物相关的背景信息,下托是海马 CA1 的主要下游目标。
这项研究将利用我在目标 1 和 2 中的培训来加深我们对处理原理的理解
大脑中与药物相关的信息一起,所提出的培训和研究不仅会帮助我
建立一个独立的研究计划,同时也提供对海马如何机制的理解
神经元编码并代表与药物相关的上下文信息,并为开发新的药物提供了线索
物质使用障碍的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanjun Sun其他文献
Yanjun Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
底栖动物摄食对沉积物中砷地球化学行为的影响-“As-Fe-S”角度下的作用机理
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
早期触觉经验剥夺对成年后动物行为的影响
- 批准号:31970940
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
社会性蜘蛛胫毛穹蛛(Stegodyphus tibialis)个性对合作行为适应性的影响
- 批准号:31901084
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
雌激素调节成年雄性斑胸草雀前脑核团电生理活动和突触可塑性对鸣唱行为的影响研究
- 批准号:31860605
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多肽纳米凝胶支架引导二甲胺四环素定向活化的小胶质细胞植入对损伤脊髓神经元和轴突影响的动物实验研究
- 批准号:31872310
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Systems Genetics of Cocaine Preference in Drosophila
果蝇可卡因偏好的系统遗传学
- 批准号:
10675195 - 财政年份:2023
- 资助金额:
$ 15.13万 - 项目类别:
Targeting methylglyoxal-induced diabetic neuropathic pain through the integrated stress response
通过综合应激反应针对甲基乙二醛诱发的糖尿病神经性疼痛
- 批准号:
10567294 - 财政年份:2023
- 资助金额:
$ 15.13万 - 项目类别:
Receptor for advanced glycation end-products signaling induction in the lung and placenta due to secondhand smoke and e-cigarette vapor
二手烟和电子烟蒸汽导致肺和胎盘中晚期糖基化终产物信号诱导的受体
- 批准号:
10437516 - 财政年份:2022
- 资助金额:
$ 15.13万 - 项目类别:
Development of microencapsulated PI301 targeting lung GABAergic signaling
开发针对肺 GABA 信号传导的微囊 PI301
- 批准号:
10478543 - 财政年份:2022
- 资助金额:
$ 15.13万 - 项目类别: