Gene Therapy Design Principles for Duchenne Muscular Dystrophy

杜氏肌营养不良症的基因治疗设计原则

基本信息

  • 批准号:
    10723951
  • 负责人:
  • 金额:
    $ 16.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract The long-term objective of this study is to develop gene therapies that treat Duchenne muscular dystrophy (DMD) cardiomyopathy. DMD cardiomyopathy, characterized by ventricular chamber enlargement and thinning of the ventricular wall, ultimately leads to heart failure. Pathogenic features of DMD cardiomyocytes include contractile dysfunction, poor calcium handling, elevated reactive oxygen species, telomere shortening, and premature cell death. When a large number of cells die in the heart, scar tissue forms, increasing the stiffness of the heart. Although there are treatments available to alleviate symptoms of dilated cardiomyopathy, there are currently no therapies to prevent or delay the onset of this disease. Smaller versions of dystrophin amenable to gene therapy have shown promise to treat DMD-associated severe skeletal muscle wasting; however, surprisingly little is known about their effects in treating heart failure. This research plan will leverage bioengineered hydrogels of tunable stiffness, human induced pluripotent stem cells (iPSCs) with dystrophin mutations, and biochemical techniques to determine if full-length dystrophin can rescue DMD cardiomyocytes from their pathogenic demise. During the K01 award period, Dr. Asuka Eguchi will train under the mentorship of Dr. Helen Blau, an expert on DMD. By engineering hydrogels that mimic stiff, diseased heart tissue, Dr. Eguchi will be able to measure parameters of contraction in cardiomyocytes differentiated from DMD iPSCs. Aim 1 will test if full-length dystrophin can rescue DMD cardiomyocytes from contractile deficits, aberrant calcium handling, and premature cell death. Aim 2 will determine if split vector or lipid nanoparticle approaches can deliver full-length dystrophin to cardiomyocytes. Aim 3 will test whether this gene therapy strategy to deliver full-length dystrophin can delay the onset of DMD cardiomyopathy in a mouse model. Gene therapy approaches targeting the root cause of disease, the lack of dystrophin, is critical for extending lifespan and improving the quality of life of DMD patients. The career development plan is designed to enable Dr. Eguchi to successfully transition to a career as independent investigator. Her scientific advisory committee consist of Dr. Beth Pruitt, a bioengineer with expertise in traction force microscopy, Dr. Joseph Wu, an expert on cardiovascular disease modeling, and Dr. Daniel Bernstein, a pediatric cardiologist. Collectively, these collaborators will help Dr. Eguchi develop skills at the interface of bioengineering, cell biology, and biochemistry to launch an independent research program in cardiovascular research.
项目概要/摘要 这项研究的长期目标是开发治疗杜氏肌营养不良症 (DMD) 的基因疗法 心肌病。 DMD 心肌病,其特征是心室扩大和心室变薄 心室壁,最终导致心力衰竭。 DMD 心肌细胞的致病特征包括收缩性 功能障碍、钙处理不良、活性氧升高、端粒缩短和细胞早产 死亡。当心脏中大量细胞死亡时,就会形成疤痕组织,从而增加心脏的硬度。 尽管有缓解扩张型心肌病症状的治疗方法,但目前还没有 预防或延缓这种疾病发生的疗法。较小版本的抗肌营养不良蛋白适合基因治疗 已显示出治疗 D​​MD 相关的严重骨骼肌萎缩的前景;然而,令人惊讶的是很少 了解它们在治疗心力衰竭方面的作用。该研究计划将利用生物工程水凝胶 可调刚度、具有抗肌营养不良蛋白突变的人类诱导多能干细胞 (iPSC) 以及生化 确定全长肌营养不良蛋白是否可以挽救 DMD 心肌细胞免于致病性死亡的技术。 在K01奖励期间,Asuka Eguchi博士将在专家Helen Blau博士的指导下进行培训 DMD。通过设计模仿僵硬、患病心脏组织的水凝胶,江口博士将能够测量 从 DMD iPSC 分化而来的心肌细胞的收缩参数。目标 1 将测试是否完整 抗肌营养不良蛋白可以挽救 DMD 心肌细胞,使其免受收缩缺陷、钙处理异常和早产的影响 细胞死亡。目标 2 将确定分裂载体或脂质纳米颗粒方法是否可以递送全长肌营养不良蛋白 对心肌细胞。目标 3 将测试这种提供全长肌营养不良蛋白的基因治疗策略是否可以延迟 小鼠模型中 DMD 心肌病的发作。针对根本原因的基因治疗方法 肌营养不良蛋白缺乏对于延长 DMD 患者的寿命和提高生活质量至关重要。 职业发展计划旨在使江口博士能够成功过渡到职业生涯 独立调查员。她的科学顾问委员会由 Beth Pruitt 博士组成,他是一位生物工程师, 心血管疾病建模专家 Joseph Wu 博士和 Dr. 丹尼尔·伯恩斯坦,儿科心脏病专家。总的来说,这些合作者将帮助 Eguchi 博士发展以下方面的技能: 生物工程、细胞生物学和生物化学的结合,在 心血管研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Asuka Eguchi其他文献

Asuka Eguchi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
  • 批准号:
    10643145
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
  • 批准号:
    10753675
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
  • 批准号:
    10785755
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
Testing Approaches to Promote Breast Cancer Screening in Rural Ghana
促进加纳农村地区乳腺癌筛查的测试方法
  • 批准号:
    10645446
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了