Characterizing Alzheimer's disease molecular and anatomical imaging markers and their relationships with cognition and genetics using machine learning
使用机器学习表征阿尔茨海默病分子和解剖成像标记及其与认知和遗传学的关系
基本信息
- 批准号:10723499
- 负责人:
- 金额:$ 11.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAmyloidAmyloid beta-ProteinApolipoprotein EBehaviorBehavioralBrainBrain regionClinicalClinical MarkersCognitionCognitiveComplexComputer AssistedDataData SetDementiaDiagnosisDiagnosticDisease OutcomeExhibitsFunctional disorderFutureGene Expression ProfileGeneticGenetic MarkersGoalsHeterogeneityImageKnowledgeMachine LearningMagnetic Resonance ImagingMeasurementMental disordersMethodsMultimodal ImagingNerve DegenerationNeural Network SimulationNeurobiologyNeurodegenerative DisordersNeurofibrillary TanglesOutcomeParticipantPatientsPatternPersonsPhenotypePositron-Emission TomographyPrecision therapeuticsPreparationPsychosesResearchResearch PersonnelScienceSenile PlaquesSubgroupSumSymptomsTechniquesTestingTherapeuticTranslatingUnited StatesUniversitiesVariantWashingtonanatomic imagingbehavioral phenotypingbrain basedclinical phenotypecognitive performancedeep neural networkdesigndisease heterogeneityimaging biomarkerimaging modalityimprovedimproved outcomein vivoinnovationmachine learning methodmachine learning modelmachine learning predictionmagnetic resonance imaging biomarkermental statemild cognitive impairmentmolecular imagingneurobiological mechanismneuroimagingneuropathologyneuropsychiatric disordernovelpatient subsetspolygenic risk scorepre-clinicalprecision medicineprognosticpublic health relevanceresearch clinical testingsuccesssupervised learningsupport vector machinetargeted treatmenttau Proteinstherapeutic biomarkertreatment response
项目摘要
Project Summary
Amyloid-beta and tau are hallmarks of mild cognitive impairment (MCI)/Alzheimer’s disease (AD). The
relationships of in-vivo amyloid-beta, tau, and neurodegeneration with cognitive, clinical, and genetic markers
are not well understood. Patients with AD pathology exhibit heterogeneity in their clinical symptoms and illness
course. Understanding the underlying neurobiological heterogeneity mechanisms of AD and improving the
outcomes have been the central goals. This proposal leverages complementary information of in-vivo amyloid-
beta positron emission tomography (amyloid PET), tau PET, structural magnetic resonance imaging (sMRI),
cognitive, clinical, and genetic measurements via advanced machine learning methods and investigates the
relationships among these measurements in patients with MCI/AD relative to normal controls. The proposal will
study the data from the Alzheimer Disease Neuroimaging Initiative (ADNI; N = 898) and the Washington
University’s Knight Alzheimer Disease Research Center (Knight ADRC; N = 1,121). This study will be the first to
examine regional amyloid PET, tau PET, and sMRI markers and their relationships with cognitive, clinical, and
genetic phenotypes using machine learning predictive modeling and heterogeneity analytics in AD research. The
proposal will quantify regional PET outcomes as distribution volume ratio (DVR) and sMRI as the volumes and
investigate their associations with cognitive [Mini-mental state examination (MMSE)], clinical [clinical dementia
rating sum of boxes (CDR-SB) and CDR], and genetic [polygenic risk scores (PRS) and apolipoprotein E (APOE)]
measurements. Aim 1 will develop machine learning modeling methods to study the relationships of amyloid
PET, tau PET, and sMRI with cognitive and clinical phenotypes and test the hypothesis of whether regional
brain-based imaging measurements exhibit multivariate predictive associations with cognitive and clinical
phenotypes in MCI/AD patients and controls. Aim 2 will study the regional heterogeneity of amyloid PET, tau
PET, and sMRI outcomes via semi-supervised machine learning methods. The study will compare the imaging
outcomes between identified subgroups of patients or controls vs. each subgroup of patients to test the
hypothesis of whether imaging markers differ between subgroups of patients. Aim 3 will examine the
relationships of amyloid PET, tau PET, and sMRI heterogeneity signatures with cognition and genetics to test
whether imaging signatures associate differentially with cognition and genetics in the subgroups of MCI/AD
relative to controls. Overall, this innovative proposal will yield critical information on AD heterogeneity
mechanisms, and contribute to precision medicine of diagnosis and treatment of AD.
1
项目摘要
淀粉样蛋白β和tau是轻度认知障碍(MCI)/阿尔茨海默氏病(AD)的标志
体内淀粉样蛋白β,tau和神经变性与认知,临床和遗传标记的关系
不太了解AD病理学的患者在其临床症状上表现出异质性
当然。
结果一直是中心目标。
β正电子发射断层扫描(淀粉样蛋白宠物),tau PET,结构磁共振成像(SMRI),
通过先进的机器学习方法认知,临床和遗传测量,并研究
这些测量在MCI/AD患者中相对于正常对照的患者之间的关系。
研究来自阿尔茨海默氏病神经成像倡议(ADNI; n = 898)和华盛顿的数据
大学的阿尔茨海默氏病中心(骑士ADRC; n = 1,121)。
检查区域淀粉样蛋白宠物,tau PET和SMRI标记以及与认知,临床的关系。
使用机器学习预测建模和非均质性分析的遗传表型
建议将量化区域宠物结果为AS分布量比(DVR)和SMRI作为体积和
研究他们与认知[迷你精神状态检查(MMSE)],临床痴呆症的关联
盒子(CDR-SB)和CDR]的评分总和[多基因风险评分(PRS)和载脂蛋白E(APOE)]
AIM 1的测量将开发机器学习建模方法来研究淀粉样蛋白的关系
PET,TAU PET和SMRI,具有认知和临床表态势态势态势态势态苯局局检验检验
基于大脑的成像测量表现出与认知和临床的多元预测关联
MCI/AD患者和对照2的表型将研究淀粉样蛋白的区域异质性
通过半监督机器学习方法,宠物和蓝精灵的结果将比较成像
确定的患者或对照组与患者的每个亚组进行测试的结果
特征成像标记的假设在患者的亚组之间有所不同。
淀粉样宠物,tau宠物和SMRI异质性特征与认知和遗传学的关系
成像签名是否与MCI/AD亚组中的认知和遗传学有区别
相对于对照。总体而
机制,并有助于AD诊断和治疗的精确医学。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganesh Chand其他文献
Ganesh Chand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 11.91万 - 项目类别:
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 11.91万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 11.91万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 11.91万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 11.91万 - 项目类别: