Pediatric Heart Disease: Getting from Mutations to Therapeutics
小儿心脏病:从突变到治疗
基本信息
- 批准号:9241613
- 负责人:
- 金额:$ 85.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-15 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:ADME StudyAddressAdoptedAdultAdverse effectsAnimalsBackBiologicalBiological ModelsCardiacCardiovascular DiseasesCaringCell LineCell modelCellsChemicalsChildhoodClinical Trials DesignComorbidityComplexCongenital Heart DefectsDataDevelopmentDiseaseDisease modelDrosophila genusDrosophila melanogasterDrug InteractionsDrug usageEyeFDA approvedGeneticGenomicsHeart DiseasesHeart HypertrophyHereditary DiseaseHomeostasisHumanHypertrophic CardiomyopathyLibrariesMethodsMissionMitogen-Activated Protein KinasesModelingMutant Strains MiceMutationMyocardialNational Heart, Lung, and Blood InstituteNoonan SyndromeOther GeneticsPathogenesisPharmaceutical PreparationsPharmacogenomicsPharmacologyPhenotypePlant RootsPremature MortalityPupaRAF1 geneResearch PersonnelRoboticsSignal TransductionSystemTechnologyTestingTherapeuticToxic effectVeinsVial deviceWingaccurate diagnosisbasedisease-causing mutationdrug developmentflygene discoveryhigh throughput screeningimprovedinduced pluripotent stem cellinterestmouse modelmutantnovel therapeuticsprognosticscreeningsmall moleculesmall molecule librariestrait
项目摘要
Pediatric cardiovascular disorders, which comprise congenital heart defects (CHD) and myocardial and
conduction system diseases, remain highly challenging due to cardiac co-morbidities and premature mortality.
As most of these disorders are genetic, efforts over the past 30 years have focused on identifying their causal
mutations. Particularly for Mendelian traits such as Noonan syndrome and related disorders (the
RASopathies), this has been highly successful. Newer genomic technologies have accelerated gene discovery
for pediatric cardiovascular disorders, including genetically complex ones. These genetic discoveries are
improving care through more accurate diagnosis, better prognostication, and refinement of clinical trial design.
What has not occurred with rare exception is the development of novel therapies based on the new
understanding of disease pathogenesis enabled by these gene discoveries. Finding therapies for
pediatric cardiovascular disorders will be challenging because the biological targets are generally central to cell
homeostasis (e.g., RAS/MAP kinase signaling) so cannot be completely inhibited for long periods without
incurring side effects that would outweigh their benefits. For this R35 mechanism, I and my outstanding co-
investigators with relevant expertise intend to address this gap using a drug development pipeline that begins
with high-throughput screening to overcome pupal lethality in Drosophila melanogaster models of disease with
a chemical library that covers druggable space (n=14,400) using 96-well plates and robotics. Screening in
whole animals is performed agnostically and has the putative advantage of providing a simultaneous read out
of efficacy and toxicity. We provide preliminary data showing that we have already achieved this using a fly
RAF1 mutant model of Noonan syndrome with hypertrophic cardiomyopathy. Subsequent steps with fruit flies
include confirmation of initial hits in vials, determining efficacy against adult fly phenotypes such as rough eye,
ectopic wing veins and heart hypertrophy. Back-up libraries for the candidate compounds, typically 60-80
chemical neighbors, will be culled for ones with most desirable drug traits and then screened in the fly models.
Using a defined set of fruit fly deficiency lines, targets and anti-targets will be established to enable further
rounds of rational pharmacology. ADME studies will be used to reduce potential for drug-drug interactions. In
parallel, we will pursue repurposing of FDA-approved drugs using library screening with fruit fly models and
systems pharmacogenomics. Leading compounds and drugs will then be tested against phenotypes in human
induced pluripotent stem cell lines with the disease-causing mutation for efficacy. The most promising drugs
will then be tested in existing mouse models (e.g., HCM in Raf1 mutant mice) using appropriate endpoints.
Taken as a whole, the approach proposed will significantly advance the identification of novel therapeutics for
pediatric cardiovascular diseases, starting with the RASopathies and later for other traits. If robust, this will
provide a paradigm that can be adopted for other genetic traits of interest to the NHLBI.
小儿心血管疾病,包括先天性心脏病 (CHD) 和心肌和
由于心脏并发症和过早死亡,传导系统疾病仍然极具挑战性。
由于大多数这些疾病都是遗传性的,过去 30 年的努力重点是确定其病因
突变。特别是对于孟德尔特征,例如努南综合征和相关疾病(
RASopathies),这非常成功。更新的基因组技术加速了基因发现
用于儿科心血管疾病,包括遗传复杂的疾病。这些基因发现是
通过更准确的诊断、更好的预测和改进临床试验设计来改善护理。
除了极少数例外,基于新疗法的新疗法的开发并不少见。
这些基因的发现使我们能够了解疾病的发病机制。寻找治疗方法
小儿心血管疾病将具有挑战性,因为生物靶标通常是细胞的核心
体内平衡(例如 RAS/MAP 激酶信号传导),因此不能在不使用药物的情况下长期完全抑制
产生的副作用超过其益处。对于这个 R35 机制,我和我的杰出合作者
具有相关专业知识的研究人员打算利用药物开发管道来解决这一差距,该管道开始
通过高通量筛选克服果蝇疾病模型中的蛹致死率
使用 96 孔板和机器人技术覆盖可药物空间 (n=14,400) 的化学库。放映于
整个动物的执行是不可知的,并且具有提供同步读出的假定优势
功效和毒性。我们提供的初步数据表明我们已经使用苍蝇实现了这一目标
努南综合征合并肥厚性心肌病的 RAF1 突变模型。果蝇的后续步骤
包括确认小瓶中的初始命中,确定对成蝇表型(例如粗糙眼)的功效,
异位翼静脉和心脏肥大。候选化合物的备份库,通常为 60-80 个
化学邻居将被挑选出具有最理想药物特性的化学邻居,然后在果蝇模型中进行筛选。
使用一组明确的果蝇缺陷品系,将建立目标和反目标,以进一步实现
一轮理性药理学。 ADME 研究将用于减少药物间相互作用的可能性。在
与此同时,我们将利用果蝇模型进行文库筛选,以寻求 FDA 批准的药物的重新利用,
系统药物基因组学。然后将针对人类表型测试主要化合物和药物
诱导具有致病突变的多能干细胞系以提高疗效。最有前途的药物
然后将使用适当的终点在现有小鼠模型(例如 Raf1 突变小鼠的 HCM)中进行测试。
总的来说,所提出的方法将显着促进新疗法的识别
儿科心血管疾病,首先是 RASopathies,后来是其他特征。如果稳健的话,这将
为 NHLBI 感兴趣的其他遗传性状提供了一个范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE D GELB其他文献
BRUCE D GELB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE D GELB', 18)}}的其他基金
Incorporating genomics into the clinical care of diverse NYC children
将基因组学纳入纽约市不同儿童的临床护理中
- 批准号:
10361994 - 财政年份:2021
- 资助金额:
$ 85.61万 - 项目类别:
Pediatric Heart Disease: Getting from Mutations to Therapeutics
小儿心脏病:从突变到治疗
- 批准号:
9440083 - 财政年份:2017
- 资助金额:
$ 85.61万 - 项目类别:
Pediatric Heart Disease: Getting from Mutations to Therapeutics
小儿心脏病:从突变到治疗
- 批准号:
10549344 - 财政年份:2017
- 资助金额:
$ 85.61万 - 项目类别:
Pediatric Heart Disease: Getting from Mutations to Therapeutics
小儿心脏病:从突变到治疗
- 批准号:
9894834 - 财政年份:2017
- 资助金额:
$ 85.61万 - 项目类别:
Pediatric Heart Disease: Getting from Mutations to Therapeutics
小儿心脏病:从突变到治疗
- 批准号:
10112285 - 财政年份:2017
- 资助金额:
$ 85.61万 - 项目类别:
Human Induced Pluripotent Cell Models of Pediatric Cardiac Disorders
人类诱导的小儿心脏病多能细胞模型
- 批准号:
8774293 - 财政年份:2013
- 资助金额:
$ 85.61万 - 项目类别:
Human Induced Pluripotent Cell Models of Pediatric Cardiac Disorders
人类诱导的小儿心脏病多能细胞模型
- 批准号:
8583749 - 财政年份:2013
- 资助金额:
$ 85.61万 - 项目类别:
Human Induced Pluripotent Cell Models of Pediatric Cardiac Disorders
人类诱导的小儿心脏病多能细胞模型
- 批准号:
8704996 - 财政年份:2013
- 资助金额:
$ 85.61万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 85.61万 - 项目类别:
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 85.61万 - 项目类别:
Developing Autophagy-Targeting Chimeras and Optimizing Cell Penetration of Large-Molecule Therapeutics
开发自噬靶向嵌合体并优化大分子治疗的细胞渗透
- 批准号:
10558145 - 财政年份:2023
- 资助金额:
$ 85.61万 - 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 85.61万 - 项目类别: