Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
基本信息
- 批准号:7259849
- 负责人:
- 金额:$ 26.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAmishAnimalsArchitectureAsthmaBlood PressureBone DensityChromosome MappingComplexComputing MethodologiesDataData SetDiabetes MellitusDiseaseGenesGeneticGenotypeHaplotypesHumanKnowledgeLinkLinkage DisequilibriumMapsMethodologyMethodsMilkModelingNumbersPerformancePersonsPhasePopulationProbabilityProductionQuantitative Trait LociResearchSingle Nucleotide PolymorphismWorkbasegenetic linkage analysisgenetic pedigreehutteriteimprovedsoftware developmenttrait
项目摘要
DESCRIPTION (provided by applicant): Statistical gene mapping in pedigrees advances our knowledge of the genetic architecture of complex diseases (e.g., diabetes, Alzheimer's disease, asthma) and quantitative traits (e.g., bone density, blood pressure, milk production) in human and animal populations. Unfortunately most observed pedigree data are not complete and have missing data. Efficiently inferring haplotype configurations and calculating identity-by-descent (IBD) probabilities for complex pedigrees with large numbers of linked loci and missing marker data by using the observed genotype data (especially dense single nucleotide polymorphism (SNP) markers) are critical components and remain challenging in statistical gene mapping. The broad, long-term objectives of the proposed work are to develop efficient statistical and computational methods for haplotyping and gene mapping in large pedigrees with missing and phase unknown marker data. The specific aims are to 1) extend our conditional enumeration haplotyping method that currently works with complete pedigree data to pedigrees with missing marker data, and then improve the method so that it can handle linkage disequilibrium (LD) between markers; 2) develop a computationally efficient method for estimating IBD probabilities in large pedigrees with large numbers of linked loci and with missing marker data, develop a fine mapping method by modeling LD information between dense (SNP) markers, and evaluate the performance of the IBD probability estimation method in terms of quantitative trait loci (QTL) mapping accuracy in linkage analysis and fine mapping; 3) apply the proposed methods to linkage analysis and fine mapping of two large, real human pedigree data sets (a 1623-person Hutterite pedigree and a 1412- person Amish pedigree); and 4) develop computer software to implement aims 1 and 2. Our approach to these aims is based on the computation of conditional probabilities of possible ordered genotypes at phase unknown markers and the calculation of likelihood of haplotype configurations. By setting a threshold value for the conditional probabilities of ordered genotypes at phase unknown markers and a threshold value for the conditional probabilities of haplotype configurations, the proposed haplotyping method identifies a subset of haplotype configurations with the highest likelihoods for a pedigree. IBD probabilities are estimated based on this subset of haplotype configurations, and then are used as input to variance components based QTL mapping methods in large pedigrees. The methodologies developed in this research will enhance our ability to map QTL and complex disease genes in human and animal populations.
描述(由申请人提供):谱系中的统计基因映射促进了我们对复杂疾病的遗传结构(例如糖尿病,阿尔茨海默氏病,哮喘)和量化性状(例如,人和动物种群中的骨密度,血压,血压,血压,血压,血压,血压,血压)的了解。不幸的是,大多数观察到的谱系数据尚未完成,并且缺少数据。通过使用观察到的基因型数据(尤其是密集的单核苷酸多态性(SNP)标记),有效地推断出单倍型配置并计算具有大量链接的基因座和缺失标记数据的复杂的典型概率(IBD)概率是至关重要的组成部分,并且在稳定基因中仍然具有挑战性。所提出的工作的广泛,长期目标是开发有效的统计和计算方法,用于具有缺失和相位未知标记数据的大型谱系中的单倍型和基因映射。具体目的是至1)扩展我们的条件枚举单倍型方法,该方法当前与缺少标记数据的家谱一起使用完整的血统数据,然后改进该方法,以便它可以处理标记之间的链接不平衡(LD); 2) develop a computationally efficient method for estimating IBD probabilities in large pedigrees with large numbers of linked loci and with missing marker data, develop a fine mapping method by modeling LD information between dense (SNP) markers, and evaluate the performance of the IBD probability estimation method in terms of quantitative trait loci (QTL) mapping accuracy in linkage analysis and fine mapping; 3)将提出的方法应用于两个大型人类谱系数据集的链接分析和精细映射(1623人的Hutterite谱系和1412-人的Amish谱系); 4)开发以实现目标1和2的计算机软件。我们对这些目标的方法基于相位未知标记处可能有序基因型的条件概率的计算以及单倍型配置的可能性的计算。通过为相位未知标记处有序的基因型的条件概率设置阈值,并为单倍型配置的条件概率设置阈值值,提出的单倍型方法可以标识具有最高可能性的单倍型配置的子集。基于此单倍型配置子集估算IBD概率,然后用作大型谱系中基于方差组件的QTL映射方法的输入。这项研究中开发的方法将增强我们在人类和动物种群中绘制QTL和复杂疾病基因的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guimin Gao其他文献
Guimin Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guimin Gao', 18)}}的其他基金
Transcriptome-wide association studies and genetic risk prediction for breast cancer integrating RNA splicing and gene expression from multiple tissues
整合来自多个组织的 RNA 剪接和基因表达的乳腺癌全转录组关联研究和遗传风险预测
- 批准号:
10456122 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Transcriptome-wide association studies and genetic risk prediction for breast cancer integrating RNA splicing and gene expression from multiple tissues
整合来自多个组织的 RNA 剪接和基因表达的乳腺癌全转录组关联研究和遗传风险预测
- 批准号:
10017927 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7429818 - 财政年份:2007
- 资助金额:
$ 26.1万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7849472 - 财政年份:2007
- 资助金额:
$ 26.1万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7991432 - 财政年份:2007
- 资助金额:
$ 26.1万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
8072710 - 财政年份:2007
- 资助金额:
$ 26.1万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7628936 - 财政年份:2007
- 资助金额:
$ 26.1万 - 项目类别:
相似国自然基金
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
间质性肺疾病致肺气体交换功能改变的超极化129Xe MRI定量研究
- 批准号:82372150
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
缺血性脑卒中疾病中NLRP6磷酸化修饰的鉴定及其在调控炎性小体活化中的作用和机制研究
- 批准号:82302474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞清除后骨髓移植延缓csf1r点突变小鼠疾病进展的机制研究
- 批准号:82301526
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动的心血管疾病区域协同医疗服务研究
- 批准号:72301123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Protective Genetic Variants for Alzheimer Disease in the Amish - RENEWAL
阿米什人阿尔茨海默病的保护性遗传变异 - RENEWAL
- 批准号:
10448612 - 财政年份:2022
- 资助金额:
$ 26.1万 - 项目类别:
Refining the Use of Polygenic Risk Scores for Alzheimer's Disease in Diverse and Founder Populations
完善阿尔茨海默病多基因风险评分在不同人群和创始人群体中的应用
- 批准号:
10387471 - 财政年份:2022
- 资助金额:
$ 26.1万 - 项目类别:
Protective Genetic Variants for Alzheimer Disease in the Amish - RENEWAL
阿米什人阿尔茨海默病的保护性遗传变异 - RENEWAL
- 批准号:
10689703 - 财政年份:2022
- 资助金额:
$ 26.1万 - 项目类别:
Evolutionary Advantage of Heterozygous PAI-1 Deficiency in Humans
人类杂合 PAI-1 缺陷的进化优势
- 批准号:
10686583 - 财政年份:2022
- 资助金额:
$ 26.1万 - 项目类别:
Additional Sequencing for the Alzheimer's Disease Sequencing Project (ADSP)
阿尔茨海默病测序项目 (ADSP) 的附加测序
- 批准号:
10473656 - 财政年份:2020
- 资助金额:
$ 26.1万 - 项目类别: