Enabled by drug delivery: Studying the role of brain-resident and infiltrating myeloid cell phenotype in brain damage associated with inflammatory disease
通过药物输送实现:研究大脑驻留和浸润性骨髓细胞表型在炎症性疾病相关脑损伤中的作用
基本信息
- 批准号:10714766
- 负责人:
- 金额:$ 37.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute Brain InjuriesAddressAnatomyAnti-Inflammatory AgentsAutoimmuneAutoimmune DiseasesAwardBasic ScienceBiodistributionBloodBlood CirculationBrainBrain InjuriesCellsCentral Nervous SystemChronicCirculationDevelopmentDiseaseDrug Delivery SystemsDrug usageEncapsulatedEncephalitisExposure toHydrogelsImmuneImplantInfiltrationInflammationInflammatoryInjectableInjectionsInterferon Type IIInterleukin-10InvestmentsLeukocytesMacrophageMentorsMicrogliaMusMyeloid CellsNanoGelNeurologic DeficitNeutrophil ActivationPatientsPeripheralPhenotypeProcessProphylactic treatmentProteinsReactionResourcesRoleScientistTechnologyTherapeuticTimeTissuesToxinTrainingTraumatic injuryVariantVirus Diseasesbiomaterial compatibilitybrain fogbrain parenchymabrain tissuecrosslinkcytokineexperienceimmune activationimmune cell infiltrateimmunoregulationimplantationinsightinterdisciplinary collaborationinventionmonocytemonomermouse modelneutrophiltargeted treatment
项目摘要
Project Summary: Patients inflicted with a traumatic injury, autoimmune disease, viral infection, or prolonged
exposure to toxins often experience acute brain damage, resulting in functional and anatomical changes within
the brain. Scientists have uncovered two key mechanisms through which innate immune cells drive acute brain
damage: infiltration of activated neutrophils and monocytes into the brain parenchyma from systemic circulation,
and chronic activation of brain-resident microglia. However, there is a basic science ‘gap’ in our understanding
of these overlapping inflammatory processes, which complicates the development of targeted therapeutics. To
what extent are the brain resident microglia, as opposed to infiltrating blood-derived myeloid cells,
responsible for acute brain injury in inflammatory disease? To address this overarching question, we
invented two enabling drug delivery technologies. The first technology is a biocompatible and biodegradable
nanogel, comprised of covalently crosslinked acrylic monomers, which delivers active protein specifically to
macrophages. We will leverage this material to answer our first key question: To what extent is peripheral
activation responsible for immune cell infiltration of the central nervous system (CNS) parenchyma? We
hypothesize that monocyte and neutrophil activation within circulation will induce central infiltration in healthy
mice, while exacerbating infiltration in inflammatory disease. We will optimize immunomodulatory variations of
the nanogel to activate circulating innate immune cells toward inflammation (interferon gamma) versus tolerance
(interleukin 10). We will evaluate the extent to which circulating innate immune cell activation using targeted
nanogels influences the cells’ biodistribution within healthy mice and mouse models of inflammatory disease.
The second technology is an injectable hydrogel encapsulating cytokines and donor macrophages that is suitable
for intracerebral implantation. Through direct injection of immunomodulatory proteins and myeloid cells into the
parenchyma of healthy mice, we will evaluate the impact of infiltrating myeloid cell phenotype on brain-resident
microglia separate from any activation within or infiltration from the periphery. We will quantify the extent to which
classically versus alternatively polarized macrophages, implanted within the brain parenchyma, activate brain-
resident microglia toward inflammation and induce neurological deficit (i.e. functional, anatomical). As proof-of-
concept, we will evaluate local delivery of anti-inflammatory cytokines and macrophages as a prophylactic
treatment for inflammatory brain damage associated with an LPS challenge. The MIRA award will allow the PI
(Clegg) to commit greater time and resources to these unanswered questions, interdisciplinary collaborations,
training, and mentoring of a diverse scientific workforce. We anticipate that long-term investment in this line of
inquiry will result in fundamental insights on the mechanism of inflammation-induced brain injury as well as
translational technologies for specific disease indications.
项目摘要:因创伤性损伤,自身免疫性疾病,病毒感染或长时间造成的患者
接触毒素通常会遭受急性脑损伤,从而导致功能和解剖变化
大脑。科学家发现了两个关键机制,固有的免疫细胞驱动急性大脑
损害:激活的嗜中性粒细胞和单核细胞从全身循环中浸润到脑实质中,
和长期激活脑居民小胶质细胞。但是,我们的理解有基础科学的“差距”
在这些重叠的炎症过程中,这使靶向治疗的发展变得复杂。到
大脑居民小胶质细胞多大,而不是浸润血液来源的髓样细胞
负责炎症性疾病中的急性脑损伤?为了解决这个总体问题,我们
发明了两种启用药物输送技术。第一种技术是一种可生物相容性且可生物降解的
纳米凝胶由共价交联的丙烯酸单体组成,该单体专门提供活性蛋白
巨噬细胞。我们将利用此材料回答我们的第一个关键问题:周边的程度在多大程度上
负责中枢神经系统(CNS)副瘤免疫细胞浸润的激活?我们
假设循环中的单核细胞和中性粒细胞激活将诱导健康中心浸润
小鼠,同时加剧炎症性疾病的浸润。我们将优化的免疫调节变化
纳米凝胶激活循环的先天免疫细胞朝着炎症(干扰素伽马)与耐受性激活
(白介素10)。我们将评估使用靶向的循环先天免疫细胞激活的程度
纳米凝胶会影响健康小鼠中细胞的生物分布和炎症性疾病的小鼠模型。
第二种技术是封装细胞因子和供体巨噬细胞的可注射水凝胶,是合适的
用于脑内植入。通过直接注射免疫调节蛋白和髓样细胞
健康小鼠的实质,我们将评估浸润髓样细胞表型对脑居民的影响
小胶质细胞与外围的任何激活或浸润中的任何激活分开。我们将量化
经典与替代两极化的巨噬细胞,植入脑实质中,激活脑
居民小胶质细胞炎症并诱导神经系统缺陷(即功能,解剖学)。作为证明
概念,我们将评估抗炎细胞因子和巨噬细胞的局部递送作为预防性
治疗与LPS挑战有关的炎症性脑损伤。 MIRA奖将允许PI
(Clegg)将更多时间和资源用于这些未解决的问题,跨学科合作,
培训和对多样化的科学劳动力的心理化。我们预计这一线的长期投资
询问将导致对炎症引起的脑损伤机理的基本见解以及
特定疾病适应症的翻译技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John R Clegg其他文献
John R Clegg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
通过调控颈淋巴结引流促进急性颅脑损伤后神经修复与再生——基于脑-颈淋巴结通路概念的功能与机制研究
- 批准号:82311530117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:国际(地区)合作与交流项目
应用人工智能深度学习技术构建轻中度颅脑损伤急性期颅内血肿进展预判体系的研究
- 批准号:82171381
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
Netrin-1抑制急性缺血性脑损伤中小胶质细胞介导的炎症反应的作用及机制
- 批准号:82171286
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
基于小胶质细胞HMGB1/TLR4/NF-κB信号通路探讨针刺在急性一氧化碳中毒脑损伤中的抗炎机制
- 批准号:
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
己糖激酶2通过蛋白激酶活性调节星形胶质细胞外泌体生成参与急性缺血性脑损伤
- 批准号:82071321
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 37.33万 - 项目类别:
Identifying and modeling immune correlates of protection against congenital CMV transmission after primary maternal infection
原发性母体感染后预防先天性巨细胞病毒传播的免疫相关性的识别和建模
- 批准号:
10677439 - 财政年份:2023
- 资助金额:
$ 37.33万 - 项目类别:
Feasibility of Using PET Imaging for Detection of Treatment-Induced Changes in Chronic Neuroinflammation Following TBI
使用 PET 成像检测 TBI 后治疗引起的慢性神经炎症变化的可行性
- 批准号:
10703823 - 财政年份:2023
- 资助金额:
$ 37.33万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 37.33万 - 项目类别: