Understanding the OAS/RNase L pathway during pathogenic viral infections
了解病原性病毒感染期间的 OAS/RNase L 途径
基本信息
- 批准号:10714902
- 负责人:
- 金额:$ 48.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAccelerationAntiviral ResponseAutoimmune DiseasesBiologyCell NucleusCell physiologyComplexCytoplasmCytoplasmic GranulesDengue InfectionDengue VirusDevelopmentDiseaseGene ExpressionImmuneInfluenza A virusInterferon Type IKnowledgeMalignant NeoplasmsMediatingMedicineMessenger RNAMolecularNerve DegenerationNuclearPathogenicityPathway interactionsProcessProductionProtein BiosynthesisRNARegulationResearchRibonucleasesRibonucleoproteinsRibosomesTranslationsViralViral GenesViral ProteinsVirusVirus Diseasescancer therapygene inductionimmunoregulationmRNA DecaymRNA Exportpathogenic virusprogramsresponsestress granulevirology
项目摘要
PROJECT SUMMARY
Ribonuclease L (RNase L) is a key component of the mammalian innate antiviral response. For decades, RNase
L was presumed to reduce viral protein synthesis by cleaving ribosomes to arrest translation. However, we and others
recently demonstrated that RNase L-cleaved ribosomes are translation-competent, and that pathogenic viruses can
synthesize proteins despite activating RNase L. These observations have revealed a significant gap in knowledge
regarding how RNase L functions and how viruses evade it. We have demonstrated that RNase L rapidly degrades nearly
all cellular mRNAs upon activation. This activity regulates three cellular processes that have expanded our understanding
of RNase L and that have elucidated how pathogenic viruses evade and potentially hijack RNase L functions. First,
RNase L reprograms translation to an antiviral state by degrading constitutively expressed cellular mRNAs while
sparing host mRNAs encoding antiviral proteins (e.g., type I interferons), which permits antiviral protein synthesis.
Importantly, the mRNAs encoded by several pathogenic viruses (e.g., dengue virus) similarly evade RNase L-mediated
mRNA decay, thus permitting viral protein synthesis. This observation has elucidated how pathogenic viruses synthesize
proteins despite activating RNase L. This application proposes to characterize the RNase L-mediated mRNA decay
pathway and determine how host and viral mRNAs evade it. Second, RNase L activation triggers the inhibition of nuclear
mRNA export. This is a critical antiviral mechanism that antagonizes influenza A virus protein synthesis, but it also
downregulates the expression of host antiviral proteins (e.g., type I interferons). Importantly, pathogenic viruses (e.g.,
dengue virus) activate this RNase L-dependent pathway, resulting in sequestration of host antiviral mRNAs in the
nucleus. This observation suggests that viruses potentially hijack this function of RNase L to limit host antiviral protein
production. This application aims to determine how RNase L inhibits mRNA export, the breadth of viruses it antagonizes,
how it impacts host antiviral gene expression during pathogenic viral infections. Third, RNase L regulates the assembly
of cytoplasmic antiviral ribonucleoprotein complexes. Specifically, RNase L inhibits the assembly of stress granules and
promotes the assembly of an alternative stress granule-like ribonucleoprotein complex termed RNase L-dependent body.
RNase L-dependent bodies are the predominant antiviral granule assembled in response to SARS-CoV-2 or dengue virus
infection, yet their function is completely unknown. This application aims to determine the function of antiviral stress
granules and RNase L-dependent bodies and to determine how their regulation by RNase L alters the antiviral response.
Understanding the mechanisms and functions of these cellular processes will advance our understanding of the
OAS/RNase L pathway, innate immune antiviral gene induction, and virology. Moreover, it will promote general
medicine by broadly characterizing fundamental cellular, molecular, and RNA biology that is relevant to non-infectious
diseases, including autoimmune diseases, neurodegeneration, and cancer. Lastly, the proposed research will support the
development of promising antiviral, immunomodulatory, and anticancer therapies based on RNase L biology.
项目概要
核糖核酸酶 L (RNase L) 是哺乳动物先天抗病毒反应的关键组成部分。几十年来,RNase
据推测,L 通过裂解核糖体来阻止翻译,从而减少病毒蛋白质的合成。然而,我们和其他人
最近证明,RNase L 切割的核糖体具有翻译能力,并且致病病毒可以
尽管激活了 RNase L,但仍合成蛋白质。这些观察揭示了知识上的重大差距
关于 RNase L 的功能以及病毒如何逃避它。我们已经证明 RNase L 可以快速降解近
激活后的所有细胞 mRNA。这种活动调节三个细胞过程,扩大了我们的理解
RNase L 的研究,并阐明了致病病毒如何逃避并可能劫持 RNase L 功能。第一的,
RNase L 通过降解组成型表达的细胞 mRNA 将翻译重新编程为抗病毒状态,同时
保留编码抗病毒蛋白(例如 I 型干扰素)的宿主 mRNA,从而允许抗病毒蛋白合成。
重要的是,由几种病原病毒(例如登革热病毒)编码的 mRNA 类似地逃避 RNase L 介导的
mRNA 衰变,从而允许病毒蛋白质合成。这一观察结果阐明了致病病毒是如何合成的
尽管激活 RNase L,但蛋白质仍然存在。该应用旨在表征 RNase L 介导的 mRNA 衰减
途径并确定宿主和病毒 mRNA 如何逃避它。其次,RNase L 激活触发核抑制
mRNA 输出。这是拮抗甲型流感病毒蛋白质合成的关键抗病毒机制,但它也
下调宿主抗病毒蛋白(例如 I 型干扰素)的表达。重要的是,致病病毒(例如,
登革热病毒)激活这种 RNase L 依赖性途径,导致宿主抗病毒 mRNA 被隔离在
核。这一观察结果表明,病毒可能劫持 RNase L 的这一功能来限制宿主抗病毒蛋白
生产。该应用旨在确定 RNase L 如何抑制 mRNA 输出、其拮抗病毒的广度、
它如何影响致病性病毒感染期间宿主抗病毒基因的表达。三、RNase L调控组装
细胞质抗病毒核糖核蛋白复合物。具体来说,RNase L 抑制应激颗粒的组装,
促进另一种应激颗粒状核糖核蛋白复合物的组装,称为 RNase L 依赖性体。
RNase L 依赖性体是针对 SARS-CoV-2 或登革热病毒而组装的主要抗病毒颗粒
感染,但其功能完全未知。该应用旨在确定抗病毒应激的功能
颗粒和 RNase L 依赖性小体,并确定 RNase L 对其的调节如何改变抗病毒反应。
了解这些细胞过程的机制和功能将增进我们对
OAS/RNase L 途径、先天免疫抗病毒基因诱导和病毒学。此外,还将促进普遍
通过广泛表征与非传染性相关的基本细胞、分子和 RNA 生物学来研究医学
疾病,包括自身免疫性疾病、神经退行性疾病和癌症。最后,拟议的研究将支持
开发基于 RNase L 生物学的有前途的抗病毒、免疫调节和抗癌疗法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G3BP1-dependent condensation of translationally inactive viral RNAs antagonizes infection.
- DOI:10.1126/sciadv.adk8152
- 发表时间:2024-02-02
- 期刊:
- 影响因子:13.6
- 作者:Burke, James M.;Ratnayake, Oshani C.;Watkins, J. Monty;Perera, Rushika;Parker, Roy
- 通讯作者:Parker, Roy
RNase L-induced bodies sequester subgenomic flavivirus RNAs and re-establish host RNA decay.
RNase L 诱导的体隔离亚基因组黄病毒 RNA 并重新建立宿主 RNA 衰变。
- DOI:10.1101/2024.03.25.586660
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Watkins,JMonty;Burke,JamesM
- 通讯作者:Burke,JamesM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James M Burke其他文献
James M Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James M Burke', 18)}}的其他基金
Determining the specificity and biological functions of widespread host mRNA degradation by RNase L
确定 RNase L 广泛降解宿主 mRNA 的特异性和生物学功能
- 批准号:
9757551 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
Determining the specificity and biological functions of widespread host mRNA degradation by RNase L
确定 RNase L 广泛降解宿主 mRNA 的特异性和生物学功能
- 批准号:
10116269 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
IAS 2023, the 12th IAS Conference on HIV Science, Brisbane, Australia, and virtually, 23-26 July 2023
IAS 2023,第 12 届 IAS HIV 科学会议,澳大利亚布里斯班,虚拟会议,2023 年 7 月 23-26 日
- 批准号:
10696505 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
The Impact of SARS-CoV-2 Immune Dysregulation on Antifungal Immunity
SARS-CoV-2 免疫失调对抗真菌免疫的影响
- 批准号:
10658355 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别: