Evolutionary genetics of adaptation to toxins in animals
动物适应毒素的进化遗传学
基本信息
- 批准号:10714186
- 负责人:
- 金额:$ 40.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmphibiaAnimalsBacteriaBiologicalBiologyComplexCystic FibrosisCytochrome P450Diabetes MellitusDiseaseDrosophila genusDrug Delivery SystemsDrug DesignDrug resistanceEpilepsyExcretory functionGenesGeneticGenotypeGoalsHumanIngestionIon ChannelIon Channel ProteinLinkMedicineMetabolismMigraineModelingMutationMyotoniaNervous SystemNervous System PhysiologyNeurotoxinsNewtsNicotineOrganismPathway interactionsPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhenotypePlayPoisonProductionProteinsRanaResearchResearch PersonnelResistanceRoleSkin TissueSystemTetrodotoxinTissuesToxindisease phenotypeepibatidineexperimental studyfeedingfitnessgene interactiongenome sequencingimprovedinsightmulti drug transporternervous system disordernoveltoadtoxin metabolismtraittranscriptome sequencingwhole genome
项目摘要
Project Summary/Abstract
An important goal in biology is to link genotype with phenotype for traits that affect fitness. The unique
adaptations found in animals that sequester neurotoxins are a useful model for understanding the genetic
underpinnings of simple and complex traits that are relevant to human medicine. Specifically, neurotoxins target
ion channel proteins that are critical for nervous system function. In humans, mutations in single ion channel
genes can cause diseases such as epilepsy, myotonia, cystic fibrosis, migraines, and diabetes. However, animals
often resist neurotoxins through mutations in these same ion channels, usually without suffering from disease
phenotypes. Understanding how diverse organisms fine tune the function of ion channels without causing disease
provides important information regarding the genetics of ion channel function and disease. Animals that not only
resist but also sequester toxins likely modulate multi-gene pathways underlying toxin metabolism and transport,
ultimately leading to selective toxin accumulation into specific tissues at high concentrations. The few known
genes involved in toxin sequestration also play critical roles in drug resistance (e.g., multi-drug transporters) and
metabolism (cytochrome p450s) in humans. Thus, resistance and sequestration mechanisms parallel
pharmaceutical goals to efficiently deliver drugs to specific targets and/or tissues while avoiding drug breakdown
or insensitivity. The proposed research aims to further our understanding of the genetic basis of toxin resistance
(simple) and sequestration (complex) mechanisms by leveraging state-of-the-art approaches in model and non-
model systems. In amphibians, tetrodotoxin resistance has been traced to mutations in ion channels, and
tetrodotoxin is thought to be sequestered from symbiotic bacteria. The proposed research will determine whether
Harlequin toads obtain toxins from bacteria through bacterial culturing and inoculation experiments. Researchers
will then use transcriptome sequencing to determine whether Harlequin toads and Pacific newts modulate
production and storage of TTX through specific protein activity in skin tissue. In another project, researchers will
identify genes and pathways involved in epibatidine sequestration using toxin-feeding experiments, RNA
sequencing, and whole-genome sequencing in poison frogs that can and cannot sequester epibatidine. Finally,
researchers will experimentally evolve nicotine sequestration in fruit flies to identify genes and pathways
underlying toxin sequestration with unprecedented detail. Understanding the mechanisms used by animals to
modulate toxin accumulation and clearance will provide insight into the suite of genes that interact with toxins as
they are ingested, transported, stored, or excreted. Given that neurotoxins target critical nervous system proteins
and interact with several biological pathways targeted by human medicine, the proposed research has translational
implications for pharmacology and the biology of disease.
项目概要/摘要
生物学的一个重要目标是将影响健康的性状的基因型与表型联系起来。独特的
在动物中发现的隔离神经毒素的适应性是了解遗传的有用模型
与人类医学相关的简单和复杂特征的基础。具体来说,神经毒素的目标
对神经系统功能至关重要的离子通道蛋白。在人类中,单离子通道的突变
基因可引起癫痫、肌强直、囊性纤维化、偏头痛和糖尿病等疾病。然而,动物
通常通过这些相同离子通道的突变来抵抗神经毒素,通常不会患上疾病
表型。了解不同的生物体如何微调离子通道的功能而不引起疾病
提供有关离子通道功能和疾病遗传学的重要信息。动物不仅
抵抗但也隔离毒素可能调节毒素代谢和运输的多基因途径,
最终导致高浓度的选择性毒素积累到特定组织中。为数不多的人知道
参与毒素隔离的基因也在耐药性(例如多药物转运蛋白)和
人体新陈代谢(细胞色素 p450)。因此,抵抗和隔离机制并行
制药目标是有效地将药物递送至特定靶点和/或组织,同时避免药物分解
或不敏感。拟议的研究旨在进一步了解毒素抗性的遗传基础
(简单)和封存(复杂)机制,通过利用模型和非模型中最先进的方法
模型系统。在两栖动物中,河豚毒素抗性可追溯到离子通道的突变,并且
河豚毒素被认为是与共生细菌隔离的。拟议的研究将确定是否
丑角蟾蜍通过细菌培养和接种实验从细菌中获取毒素。研究人员
然后将使用转录组测序来确定丑角蟾蜍和太平洋蝾螈是否会调节
通过皮肤组织中特定的蛋白质活性产生和储存 TTX。在另一个项目中,研究人员将
使用毒素喂养实验、RNA 鉴定参与 Epibatidine 隔离的基因和途径
测序,以及毒蛙的全基因组测序,可以和不能隔离皮巴替丁。最后,
研究人员将在果蝇中进行实验进化尼古丁封存,以确定基因和途径
潜在的毒素隔离具有前所未有的细节。了解动物使用的机制
调节毒素积累和清除将提供对与毒素相互作用的一系列基因的深入了解
它们被摄入、运输、储存或排泄。鉴于神经毒素针对关键的神经系统蛋白质
并与人类医学针对的几种生物途径相互作用,拟议的研究具有转化意义
对药理学和疾病生物学的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca D. Tarvin其他文献
A Quarter Century of Reptile and Amphibian Databases
四分之一世纪的爬行动物和两栖动物数据库
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
P. Uetz;M. Koo;Rocío Aguilar;A. Catenazzi;Ann T. Chang;R. Chaitanya;Paul Freed;Joyce Gross;Max Hammermann;Karlsruhe;Germany Jiří;Hošek;Czech Ostrava;Republic Max;Lambert;Zachary Sergi;Carol L. Spencer;Kyle Summers;Rebecca D. Tarvin;V. Vredenburg;David B. Wake - 通讯作者:
David B. Wake
A Sucker for Taste
品味的傻瓜
- DOI:
10.1016/j.cell.2020.10.012 - 发表时间:
2020 - 期刊:
- 影响因子:64.5
- 作者:
Rebecca D. Tarvin - 通讯作者:
Rebecca D. Tarvin
Honoring the Afro-Colombian musical culture with the naming of Epipedobates [to be revealed] sp. nov. (Anura: Dendrobatidae), a frog from the Pacific rainforests
以 Epipedobates [待揭晓] sp 命名,向非裔哥伦比亚音乐文化致敬。
- DOI:
10.1101/2024.03.23.586415 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. Betancourth;Juan Camilo Ríos;Andrew J. Crawford;D. Cannatella;Rebecca D. Tarvin - 通讯作者:
Rebecca D. Tarvin
Passive accumulation of alkaloids in non-toxic frogs challenges paradigms of the origins of acquired chemical defenses
无毒青蛙中生物碱的被动积累挑战了获得性化学防御起源的范式
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rebecca D. Tarvin;Jeffrey L. Coleman;D. Donoso;M. Betancourth;Karem López;Kimberly S. Gleason;J. R. Sanders;Jacqueline M. Smith;S. Ron;Juan C. Santos;Brian E. Sedio;D. Cannatella;Richard Fitch - 通讯作者:
Richard Fitch
Trade-offs between cost of ingestion and rate of intake drive defensive toxin use
摄入成本和摄入率之间的权衡推动防御性毒素的使用
- DOI:
10.1098/rsbl.2021.0579 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Tyler E. Douglas;Sofia G. Beskid;Callie E. Gernand;Brianna E. Nirtaut;Kristen E. Tamsil;R. Fitch;Rebecca D. Tarvin - 通讯作者:
Rebecca D. Tarvin
Rebecca D. Tarvin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
中国东喜马拉雅地区主要无尾两栖类繁殖生态学研究
- 批准号:31872216
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
多个同域分布入侵种对当地无尾两栖类的影响机制
- 批准号:31870507
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
两栖类皮肤抗菌肽chensinin-1b自组装纳米结构的构建、体内稳定性及抗菌作用机制研究
- 批准号:31872225
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
两栖类皮肤抗菌肽chensinin-1b对巨噬细胞极化功能调控作用及其分子机制研究
- 批准号:31702023
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
具有任意伸展结构两栖类皮肤抗菌肽chensinin-1b抗LPS引起的感染性休克与免疫调节的机制研究
- 批准号:31672289
- 批准年份:2016
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
A portable quantitative polymerase chain reaction platform (qPCR) for rapid detection of pathogens impacting model organisms in animal facilities
便携式定量聚合酶链反应平台 (qPCR),用于快速检测影响动物设施中模式生物的病原体
- 批准号:
10604150 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Mesh electronics for understanding space encoding in the amphibian brain
用于理解两栖动物大脑空间编码的网状电子器件
- 批准号:
10446284 - 财政年份:2022
- 资助金额:
$ 40.13万 - 项目类别:
PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
- 批准号:
10042289 - 财政年份:2020
- 资助金额:
$ 40.13万 - 项目类别:
PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
- 批准号:
10241311 - 财政年份:2020
- 资助金额:
$ 40.13万 - 项目类别:
Elucidation of cellular reprogramming processes that drive lens regeneration in axolotl as a basis for future therapeutic approaches
阐明驱动蝾螈晶状体再生的细胞重编程过程,作为未来治疗方法的基础
- 批准号:
9918425 - 财政年份:2019
- 资助金额:
$ 40.13万 - 项目类别: