Structural and Mechanistic Studies of the Mitochondrial Protein Folding Machinery
线粒体蛋白质折叠机制的结构和机制研究
基本信息
- 批准号:9220839
- 负责人:
- 金额:$ 34.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAgingAlzheimer&aposs DiseaseAntineoplastic AgentsApoptosisAtherosclerosisBiochemicalCardiovascular DiseasesCell SurvivalCellsCervix carcinomaClientColon CarcinomaColorectal CancerComplexCrystallizationDevelopmentDiseaseDown-RegulationDrug TargetingFunctional disorderGoalsHandHumanHuntington DiseaseHybridsIn VitroLigand BindingLightMalignant Epithelial CellMalignant neoplasm of ovaryMalignant neoplasm of prostateMetabolic DiseasesMethodsMitochondriaMitochondrial MatrixMitochondrial ProteinsMolecularMolecular ChaperonesMolecular ConformationMonitorNeoplasmsNeurodegenerative DisordersNon-Insulin-Dependent Diabetes MellitusNuclearNucleotidesOrganellesParkinson DiseasePathologicPeptide HydrolasesPhysiological ProcessesPopulationProcessProliferatingProteinsPublic HealthQuality ControlResearchResolutionRoleSTAT3 geneSignal TransductionStructureSubstrate InteractionSystemTestingTime Factorscancer cellcancer typecell typechaperone machinerydrug developmentgambogic acidhuman diseasein vivoinhibitor/antagonistinnovationinterestmalignant breast neoplasmmembermitochondrial dysfunctionmortalinmortalitymutantneoplastic cellnew therapeutic targetnovel therapeuticsosteosarcomaparalogous genepreventprostate cancer cellprotein aggregationprotein foldingprotein misfoldingproteostasispublic health relevancesmall moleculesurveillance strategythree dimensional structuretranscription factortumor
项目摘要
DESCRIPTION (provided by applicant): Mitochondrial degeneration and dysfunction are a hallmark of aging and aging-related human diseases, including Alzheimer disease, Parkinson disease, Huntington disease, cancer, type 2 diabetes, atherosclerosis, and cardiovascular diseases. Consequently, mitochondria have evolved several surveillance strategies to protect the organelle from damage. At the same time, factors that target mitochondrial proteins and selectively induce apoptosis, for instance of cancer cells, are actively sought after. The mitochondria provide a paradigm to elucidate the network of molecular chaperones and energy-dependent proteases, which function synergistically to maintain protein homeostasis in the mitochondrial matrix. It is widely appreciated that molecular chaperones provide the first line of defense against protein misfolding diseases by promoting folding and preventing aberrant folding and protein aggregation. In addition to their role in protein folding, mitochondrial chaperones, such as Mortalin (mtHsp70) and TRAP1 (mtHsp90) are also widely expressed in most tumor cell types, including colorectal, breast, prostate, and ovarian cancer, which have the highest mortality rates, but strikingly not in highly proliferating, non-tumor cells. Remarkably, down- regulation of TRAP1 abrogates the transforming potential of osteosarcoma, colon carcinoma, and cervix carcinoma cells, supporting a new role of mitochondrial chaperones in the immortalization of cancer cells. Consistently, inhibition of TRAP1 induces apoptosis in prostate cancer cells, underscoring the significance of mitochondrial chaperones as promising new drug targets. The broad and long-term research objective is to provide a molecular understanding of the mitochondrial protein quality control system in vitro and in vivo, to determine the underlying cooperative mechanism and function of the mitochondrial protein folding machinery in normal and pathological states, and how small molecules can be used to modulate mitochondrial chaperone function. The goals of this research will be pursued through the following specific aims: 1) to characterize the mitochondrial protein folding machinery in normal and disease states; 2) to target the structure of TRAP1 with small molecule compounds to modulate its chaperone function; and 3) to determine the structural and molecular basis of TRAP1-substrate interaction. To accomplish our research objective, we will use a multi-pronged in vitro and in vivo approach, which spans different resolution scales and adds to the innovation of the proposed research.
描述(申请人提供):线粒体变性和功能障碍是衰老和与衰老相关的人类疾病的标志,包括阿尔茨海默病、帕金森病、亨廷顿病、癌症、2型糖尿病、动脉粥样硬化和心血管疾病,经测试,线粒体已经进化。同时,针对线粒体蛋白并选择性诱导细胞凋亡的因子(例如癌细胞)也受到积极的追捧,线粒体为阐明线粒体蛋白提供了范例。分子伴侣和能量依赖性蛋白酶网络,协同作用以维持线粒体基质中的蛋白质稳态。人们普遍认为,分子伴侣通过促进折叠和防止异常折叠和蛋白质聚集,提供了对抗蛋白质错误折叠疾病的第一道防线。除了在蛋白质折叠中发挥作用外,线粒体伴侣,例如 Mortalin (mtHsp70) 和 TRAP1 (mtHsp90) TRAP1 也在大多数肿瘤细胞类型中广泛表达,包括结直肠癌、乳腺癌、前列腺癌和卵巢癌,这些细胞的死亡率最高,但在高度增殖的非肿瘤细胞中却没有显着表达。值得注意的是,TRAP1 的下调会消除转化。骨肉瘤、结肠癌和宫颈癌细胞的潜力,支持线粒体伴侣在癌细胞永生化中的新作用,一致地,抑制 TRAP1 会诱导前列腺癌细胞凋亡。细胞,强调线粒体伴侣作为有前途的新药物靶点的重要性,广泛而长期的研究目标是提供对体外和体内线粒体蛋白质质量控制系统的分子理解,以确定潜在的合作机制和功能。正常和病理状态下的线粒体蛋白质折叠机制,以及如何使用小分子调节线粒体伴侣功能本研究的目标将通过以下具体目标来实现:1)表征正常和病理状态下的线粒体蛋白质折叠机制。疾病状态;2)用小分子化合物靶向 TRAP1 的结构以调节其伴侣功能;3)确定 TRAP1 与底物相互作用的结构和分子基础。体外和体内方法,跨越不同的分辨率尺度并增加了拟议研究的创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis T.F. Tsai其他文献
Francis T.F. Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis T.F. Tsai', 18)}}的其他基金
Structure, Function, and Mechanism of a Mitochondrial Chaperone
线粒体伴侣的结构、功能和机制
- 批准号:
10316887 - 财政年份:2021
- 资助金额:
$ 34.06万 - 项目类别:
Structure, Function, and Mechanism of a Mitochondrial Chaperone
线粒体伴侣的结构、功能和机制
- 批准号:
10663341 - 财政年份:2021
- 资助金额:
$ 34.06万 - 项目类别:
Structure, Function, and Mechanism of a Mitochondrial Chaperone
线粒体伴侣的结构、功能和机制
- 批准号:
10663341 - 财政年份:2021
- 资助金额:
$ 34.06万 - 项目类别:
Structure, Function, and Mechanism of a Mitochondrial Chaperone
线粒体伴侣的结构、功能和机制
- 批准号:
10493261 - 财政年份:2021
- 资助金额:
$ 34.06万 - 项目类别:
Structural and Mechanistic Studies of the Mitochondrial Protein Folding Machinery
线粒体蛋白质折叠机制的结构和机制研究
- 批准号:
8839001 - 财政年份:2015
- 资助金额:
$ 34.06万 - 项目类别:
Structural and Mechanistic Studies of the Mitochondrial Protein Folding Machinery
线粒体蛋白质折叠机制的结构和机制研究
- 批准号:
9024577 - 财政年份:2015
- 资助金额:
$ 34.06万 - 项目类别:
Structure and Mechanism of a Prion-remodeling Factor
朊病毒重塑因子的结构和机制
- 批准号:
8531529 - 财政年份:2013
- 资助金额:
$ 34.06万 - 项目类别:
Structure and Mechanism of a Prion-remodeling Factor
朊病毒重塑因子的结构和机制
- 批准号:
8670000 - 财政年份:2013
- 资助金额:
$ 34.06万 - 项目类别:
相似国自然基金
阿尔茨海默病高危风险基因加速认知老化的脑神经机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
β-羟丁酸通过hnRNP A1调控Oct4抑制星形胶质细胞衰老影响AD的发生
- 批准号:31900807
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
胰岛素抵抗导致神经元衰老的分子机制及在老年痴呆疾病中的作用研究
- 批准号:91849205
- 批准年份:2018
- 资助金额:200.0 万元
- 项目类别:重大研究计划
载脂蛋白E4基因加速认知老化的脑神经机制研究
- 批准号:31700997
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
慢性睡眠障碍引起阿尔茨海默病tau蛋白病理变化及其表观遗传学机制研究
- 批准号:81771521
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
RLIP, Mitochondrial Dysfunction in Alzheimer’s Disease
RLIP,阿尔茨海默病中的线粒体功能障碍
- 批准号:
10901025 - 财政年份:2023
- 资助金额:
$ 34.06万 - 项目类别:
The role of ATP13A5 ATPase in determining blood-brain pericyte functions
ATP13A5 ATP酶在确定血脑周细胞功能中的作用
- 批准号:
10814088 - 财政年份:2023
- 资助金额:
$ 34.06万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10371815 - 财政年份:2022
- 资助金额:
$ 34.06万 - 项目类别:
Enduring Consequences of Chronic Repeated Stress on Neuro-Metabolic Function
慢性反复压力对神经代谢功能的持久影响
- 批准号:
10464422 - 财政年份:2022
- 资助金额:
$ 34.06万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 34.06万 - 项目类别: