High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
基本信息
- 批准号:9362342
- 负责人:
- 金额:$ 29.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:BehaviorBindingBinding ProteinsBiochemicalBiochemical ProcessBiological AssayBiologyBiosensorBrainCalciumCaspaseCellsCharacteristicsChemicalsCodeCytolysisDevelopmentDiseaseEnvironmental Risk FactorEventFamilyFluorescenceGelGlucoseGreen Fluorescent ProteinsImaging technologyIndividualLaboratoriesLearningLibrariesLigand BindingLigandsMagnetic Resonance SpectroscopyMeasurementMeasuresMetabolismMethodsMicrofluidicsMicroscopyMitochondriaMutagenesisNADHNeuronsOutcomePermeabilityPlasmidsPreparationProcessPropertyProtein EngineeringProtein FamilyProtein KinaseProteinsPublicationsPublishingRandomizedReactive Oxygen SpeciesReporterReportingResistanceRoleSepharoseSeriesSignal TransductionSpecificitySpheroplastsStimulusSuperoxidesTemperatureTestingTimeTissuesTransgenesVariantViral VectorWorkYeastsbasebrief screeningcell typechemical reactiondesignimaging modalityimprovedmovienovelprototypepublic health relevanceresponsescreeningsensorsequence learningtoolusabilityvirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Genetically-encoded fluorescent biosensors allow us to capture real-time “movies” of biochemical behavior
inside individual cells, and they have already proven to be valuable tools for learning new biology. The most
prominent examples are the intracellular calcium sensors, which reveal real-time neuronal activity in the intact
brain, but there are many other new tools for measuring glucose concentration, protein kinase activity, caspase
action, reactive oxygen species, and core metabolites such as ATP and NADH. Expressed via viral vectors or
transgenes, they can be targeted to individual cells or cell types, and thus they can reveal time-dependent
changes in signaling or metabolism in these cells in the context of a living, mixed-cell-type tissue – and virtually
all mammalian tissues are composed of multiple cell types with distinct roles in signaling and metabolism. In
comparison, biochemical and mass-spec measurements have exquisite chemical sensitivity, but they usually
involve sacrificing the preparation (making timecourses hard to learn), and like the also-powerful magnetic
resonance spectroscopy/imaging technologies, they rarely have single-cell specificity.
But unlike spectroscopic methods, the biosensors must be tailored specifically for each individual target. This
generally involves a combination of semi-rational protein engineering – in which a fluorescent protein and a
ligand-binding protein are fused together in a specific way – followed by screening of random or targeted
mutagenic libraries of sensor variants.
This screening process is a major limitation for sensor development, and a reason that many published
biosensors are not adequately optimized – meaning that many published sensors are a “proof of principle” that
cannot easily be used, or worse yet, have interferences that make them unreliable reporters of their nominal
targets. One reason that optimization is challenging is that many characteristics of a sensor must be
simultaneously optimized: the size of the fluorescence response, the sensitivity range for the target, the
specificity of the sensor (including interference from other ligands), and resistance to environmental factors
such as pH and temperature.
We therefore aim to develop a high-throughput and high-content screening approach for genetically-
encoded fluorescent biosensors, specifically for those that respond to ligand binding or other chemical
stimuli. This screening method uses a series of well-established microfluidic and imaging methods, and we
have piloted most of these already. When complete, this screening method should be deployable in other
laboratories for widespread use. It will enable the screening of 104-105 sensor variants in less than a day, with
information about each sensor variant in a dozen or more different conditions. We will also apply this screening
approach to a series of published and unpublished biosensors in need of specific optimizations. This project
will enable a dramatic improvement in the availability of high quality biosensors to study new biology.
项目概要/摘要
基因编码荧光生物传感器使我们能够捕捉生化行为的实时“电影”
它们已经被证明是学习新生物学的宝贵工具。
突出的例子是细胞内钙传感器,它揭示了完整神经元的实时活动。
大脑,但还有许多其他新工具可以测量葡萄糖浓度、蛋白激酶活性、半胱天冬酶
作用、活性氧和核心代谢物,例如 ATP 和 NADH 通过病毒载体或表达。
转基因,它们可以靶向单个细胞或细胞类型,因此它们可以揭示时间依赖性
在活的、混合细胞型组织的背景下,这些细胞的信号传导或代谢发生变化——而且实际上
所有哺乳动物组织均由多种细胞类型组成,在信号传导和代谢中具有不同的作用。
相比之下,生化和质谱测量具有精湛的化学灵敏度,但它们通常
涉及牺牲准备(使时间课程难以学习),并且就像同样强大的磁性一样
共振光谱/成像技术,它们很少具有单细胞特异性。
但与光谱方法不同的是,生物传感器必须针对每个目标进行专门定制。
通常涉及半理性蛋白质工程的组合——其中荧光蛋白和
配体结合蛋白以特定方式融合在一起,然后筛选随机或靶向的
传感器变体的诱变文库。
这种筛选过程是传感器开发的主要限制,也是许多人发表论文的原因
生物传感器没有充分优化——这意味着许多已发布的传感器只是“原理证明”
不能轻易使用,或者更糟糕的是,存在干扰,使它们成为不可靠的名义生产者
优化具有挑战性的原因之一是传感器的许多特性必须得到满足。
同时优化:荧光响应的大小、目标的灵敏度范围、
传感器的特异性(包括其他配体的干扰)以及对环境因素的抵抗力
例如 pH 值和温度。
因此,我们的目标是开发一种高通量、高内涵的遗传筛选方法。
编码荧光生物传感器,特别适用于那些响应配体结合或其他化学物质的生物传感器
这种筛选方法使用了一系列成熟的微流体和成像方法,我们
已经对其中的大部分进行了试点。完成后,这种筛选方法应该可以部署在其他地方。
它将能够在不到一天的时间内筛选出 104-105 个传感器变体,
有关每种传感器变体在十几种或更多不同条件下的信息,我们还将应用此筛选。
该项目需要特定优化的一系列已发表和未发表的生物传感器的方法。
将使研究新生物学的高质量生物传感器的可用性得到显着提高。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY I YELLEN其他文献
GARY I YELLEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY I YELLEN', 18)}}的其他基金
Mechanisms of seizure resistance in a mouse genetic model with altered metabolism
代谢改变的小鼠遗传模型的癫痫抵抗机制
- 批准号:
10307554 - 财政年份:2018
- 资助金额:
$ 29.42万 - 项目类别:
Mechanisms of seizure resistance in a mouse genetic model with altered metabolism
代谢改变的小鼠遗传模型的癫痫抵抗机制
- 批准号:
10057397 - 财政年份:2018
- 资助金额:
$ 29.42万 - 项目类别:
Mechanisms of Seizure Resistance in a Mouse Genetic Model with Altered Metabolism
代谢改变的小鼠遗传模型中的癫痫发作抵抗机制
- 批准号:
10733666 - 财政年份:2018
- 资助金额:
$ 29.42万 - 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
- 批准号:
10631997 - 财政年份:2017
- 资助金额:
$ 29.42万 - 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
- 批准号:
9751930 - 财政年份:2017
- 资助金额:
$ 29.42万 - 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
- 批准号:
10364295 - 财政年份:2017
- 资助金额:
$ 29.42万 - 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
- 批准号:
8897369 - 财政年份:2012
- 资助金额:
$ 29.42万 - 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
- 批准号:
8703697 - 财政年份:2012
- 资助金额:
$ 29.42万 - 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
- 批准号:
8543731 - 财政年份:2012
- 资助金额:
$ 29.42万 - 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
- 批准号:
8341600 - 财政年份:2012
- 资助金额:
$ 29.42万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
大肠杆菌麦芽糖结合蛋白与卡介苗协同促进Th1细胞活化机制及其抑制肿瘤生长作用研究
- 批准号:31170875
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
警报素(alarmin)HMGN1作为DNA疫苗佐剂的应用基础研究
- 批准号:30901376
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 29.42万 - 项目类别:
Crosstalk Between Nurr1 and Risk Factors of Parkinson's Disease and its Regulation by Nurr1's Ligands
Nurr1与帕金森病危险因素的串扰及其配体的调控
- 批准号:
10677221 - 财政年份:2023
- 资助金额:
$ 29.42万 - 项目类别:
Gain-of-function complement activators as a new class of immunotherapeutic molecules
功能获得性补体激活剂作为一类新型免疫治疗分子
- 批准号:
10629623 - 财政年份:2023
- 资助金额:
$ 29.42万 - 项目类别:
HIV Tat-associated Sensory Neuropathy and the Contribution of Toll-like Receptor Pathway
HIV Tat 相关感觉神经病变和 Toll 样受体通路的贡献
- 批准号:
10838798 - 财政年份:2023
- 资助金额:
$ 29.42万 - 项目类别:
Determining how Doublesex and sex-specific steroid hormone signaling control gonad development
确定双性和性别特异性类固醇激素信号如何控制性腺发育
- 批准号:
10679359 - 财政年份:2023
- 资助金额:
$ 29.42万 - 项目类别: