COINSTAC: decentralized, scalable analysis of loosely coupled data
COINSTAC:松散耦合数据的去中心化、可扩展分析
基本信息
- 批准号:9268713
- 负责人:
- 金额:$ 65.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AODD relapseAccountingAddressAgreementAlcohol or Other Drugs useAlgorithmic AnalysisAlgorithmsAttentionBrain imagingClassificationClinical DataClinical ResearchCollaborationsCommunitiesConsent FormsCoupledDataData AggregationData SetData SourcesDecentralizationDevelopmentEnsureFamilyFunctional Magnetic Resonance ImagingFundingGeneticGenetic MarkersHealthHippocampus (Brain)HumanIndividualInformaticsInstitutionInternationalKnowledgeLanguageLettersLinear ModelsLocationLogisticsMachine LearningManualsMeasuresMethodsMovementPaperPlant RootsPoaceaePopulationPrivacyPrivatizationProceduresProcessReproducibilityResearchResearch PersonnelResourcesRiskRunningScienceSiteStreamSubstance abuse problemSystemTestingTimeUnited States National Institutes of Healthbasecommunecomputer frameworkcomputing resourcesconnectomecostdata sharingdistributed dataflexibilityimaging geneticsimaging modalityindependent component analysisneuroimagingnovelopen datapeerpublic health relevancequality assurancerepositorystatisticstoolvirtual
项目摘要
DESCRIPTION (provided by applicant):
The brain imaging community is greatly benefiting from extensive data sharing efforts currently underway5,10. However, there is a significant gap in existing strategies which focus on anonymized, post-hoc sharing of either 1) full raw or preprocessed data [in the case of open studies] or 2) manually computed summary measures [such as hippocampal volume11, in the case of closed (or not yet shared) studies] which we propose to address. Current approaches to data sharing often include significant logistical hurdles both for the investigator sharing the dat as well as for the individual requesting the data (e.g. often times multiple data sharing agreements and approvals are required from US and international institutions). This needs to change, so that the scientific community becomes a venue where data can be collected, managed, widely shared and analyzed while also opening up access to the (many) data sets which are not currently available (see recent overview on this from our group2).
The large amount of existing data requires an approach that can analyze data in a distributed way while also leaving control of the source data with the individual investigator; this motivates dynamic, decentralized way of approaching large scale analyses. We are proposing a peer-to-peer system called the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). The system will provide an independent, open, no-strings-attached tool that performs analysis on datasets distributed across different locations. Thus, the step of actually aggregating data can be avoided, while the strength of large-scale analyses can be retained. To achieve this, in Aim 1, the uniform data interfaces that we propose will make it easy to share and cooperate. Robust and novel quality assurance and replicability tools will also be incorporated. Collaboration and data sharing will be done through forming temporary (need and project-based) virtual clusters of studies performing automatically generated local computation on their respective data and aggregating statistics in global inference procedures. The communal organization will provide a continuous stream of large scale projects that can be formed and completed without the need of creating new rigid organizations or project-oriented storage vaults. In Aim 2, we develop, evaluate, and incorporate privacy-preserving algorithms to ensure that the data used are not re-identifiable even with multiple re-uses. We also will develop advanced distributed and privacy preserving approaches for several key multivariate families of algorithms (general linear model, matrix factorization [e.g. independent component analysis], classification) to estimate intrinsic networks and perform data fusion. Finally, in Aim 3, we will demonstrate the utility of this approach in a proof of concept study through distributed analyses of substance abuse datasets across national and international venues with multiple imaging modalities.
描述(由申请人提供):
脑成像界从目前正在进行的广泛数据共享工作中受益匪浅5,10,但现有策略存在重大差距,这些策略侧重于 1) 完整原始数据或预处理数据的匿名、事后共享。开放研究]或2)手动计算的汇总测量[例如海马体积11,在封闭(或尚未共享)研究的情况下],我们建议解决当前的数据共享方法通常包括对研究者而言的重大后勤障碍。共享数据以及请求数据的个人(例如,通常需要美国和国际机构的多个数据共享协议和批准),这种情况需要改变,以便科学界成为可以收集数据的场所,管理、广泛共享和分析,同时还开放对当前不可用的(许多)数据集的访问(请参阅我们组2最近对此的概述)。
大量的现有数据需要一种能够以分布式方式分析数据的方法,同时将源数据的控制权留给个体研究者;这激发了动态、分散的方法来进行大规模分析。名为“匿名计算协作信息学和神经影像套件工具包”(COINSTAC)的对等系统将提供一个独立、开放、无附加条件的工具,对分布在不同地点的数据集进行分析。可以避免实际聚合数据的步骤,同时可以保留大规模分析的优势,为了实现这一目标,我们提出的统一数据接口将使共享和协作变得容易。还将纳入保证和可复制性工具,通过形成临时的(基于需求和项目的)虚拟研究集群,对各自的数据执行自动生成的本地计算,并在全球推理程序中汇总统计数据。将提供连续的大型项目流,这些项目可以形成和完成,而无需创建新的僵化组织或面向项目的存储库。在目标 2 中,我们开发、评估和合并隐私保护算法以确保数据。即使多次重复使用,也无法重新识别所使用的数据,我们还将为几个关键的多元算法系列(一般线性模型、矩阵分解[例如独立成分分析]、分类)开发先进的分布式和隐私保护方法来估计内在网络。并进行数据融合。最后,在目标 3 中,我们将通过使用多种成像模式对国内和国际场所的药物滥用数据集进行分布式分析,展示这种方法在概念验证研究中的实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINCE D CALHOUN其他文献
VINCE D CALHOUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINCE D CALHOUN', 18)}}的其他基金
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10443779 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuits
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10410073 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10197867 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析PD
- 批准号:
10252236 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10645089 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
9811339 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
Flexible multivariate models for linking multi-scale connectome and genome data in Alzheimer's disease and related disorders
用于连接阿尔茨海默病和相关疾病的多尺度连接组和基因组数据的灵活多变量模型
- 批准号:
10157432 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10656608 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
COINSTAC 2.0: decentralized, scalable analysis of loosely coupled data
COINSTAC 2.0:松散耦合数据的去中心化、可扩展分析
- 批准号:
10622017 - 财政年份:2015
- 资助金额:
$ 65.51万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
- 批准号:
10643695 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Gabapentinoid/opioid mixtures: abuse and toxicity
加巴喷丁/阿片类混合物:滥用和毒性
- 批准号:
10639396 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别: