Mechanisms regulating the biosynthesis and signaling of oxylipins
氧脂素生物合成和信号传导的调节机制
基本信息
- 批准号:10710733
- 负责人:
- 金额:$ 40.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:12-HETEAddressAnabolismArachidonate 12-LipoxygenaseArachidonic AcidsBasic ScienceBiologicalBiological ModelsBiological ProcessBiologyBlood PlateletsCardiovascular DiseasesCellsClinicClinicalCoagulation ProcessConsensusCytochrome P450DetectionDiseaseGenesGoalsHealthHumanIndividualInflammationKnowledgeLipidsLipoxygenaseMalignant NeoplasmsMegakaryocytesMixed Function OxygenasesModelingPatternPlayPolyunsaturated Fatty AcidsPrognosisProstaglandin-Endoperoxide SynthaseResearchRoleSignal PathwaySignal TransductionSignaling MoleculeTranslationsclinically relevantdisease diagnosisinnovationinsightlipidomicsnanomolarnovelnovel therapeutic interventionprogramstooltumor progression
项目摘要
PROJECT SUMMARY
Oxylipins are oxygenated bioactive lipids derived from polyunsaturated fatty acids that have diverse and
integral functions in health and disease, including inflammation, cancer, and cardiovascular diseases. Oxylipins
are short-lived, locally acting signaling molecules that are synthesized on demand by cyclooxygenases (COX),
lipoxygenases (LOX), or cytochrome P450 monooxygenases. Advances in lipidomics have led to the detection
of disease-specific changes in oxylipins. Although the identification of disease-specific changes in oxylipins has
the power to be used for disease diagnosis, prognosis, or treatment, the translation of lipidomic studies into the
clinic remains challenging due to a lack of biological understanding of oxylipins. To better understand the
clinical relevance of disease-specific changes, we identified critical gaps in our knowledge that need to be
addressed, including 1) what mechanisms regulate the coordinated synthesis of multiple oxylipins leading to
cell-specific oxylipin patterns; and 2) how the signals elicited from individuals oxylipins are integrated into
biological functions. To address these gaps in our knowledge, the long-term goal of our research program is
to decipher the signaling mechanism responsible for the synthesis and function of individual oxylipins to
understand the functional consequence of their alterations in diseases. Without further mechanistic insights
into disease-specific changes in oxylipins, it is unlikely novel oxylipins will be effectively targeted for clinical
purposes. Platelets are the ideal model system to study oxylipin biology because they produce nanomolar
levels of approximately 15 oxylipins from COX and 12(S)-lipoxygenase (12-LOX) and offer a simplified model
to study the biological consequences of oxylipin dysregulation. In this proposal, we will focus on the function of
12-LOX and its arachidonic acid (AA)-derived metabolite, 12-HETE, which have broad clinical and biological
significance. However, due to the lack of consensus on the function of 12-HETE, the mechanism by which 12-
LOX contributes to inflammation, cancer progression, and clotting is controversial and represents a substantial
knowledge gap. This proposal will study 12-LOX and 12-HETE as a prototypical examples to address its role in
disease, and develop tools to characterize the function of oxylipins by using gene-edited human
megakaryocytes, which have been shown to faithfully recapitulate the donor-derived platelets. Our short-term
goals are to 1) determine the intracellular mechanisms used to release and deliver substrate to 12-LOX and 2)
identify the downstream signaling pathway(s) activated by 12-HETE in platelets. Our studies will provide
valuable insight into the mechanistic understanding of oxylipin synthesis and function that could ultimately aid
in developing new therapeutic approaches for a broad range of diseases.
项目概要
氧脂质是源自多不饱和脂肪酸的含氧生物活性脂质,具有多种和
在健康和疾病中发挥着不可或缺的作用,包括炎症、癌症和心血管疾病。氧脂质
是短寿命、局部作用的信号分子,由环氧合酶 (COX) 按需合成,
脂加氧酶 (LOX) 或细胞色素 P450 单加氧酶。脂质组学的进展导致了检测
氧脂质的疾病特异性变化。尽管氧脂质的疾病特异性变化的鉴定已
用于疾病诊断、预后或治疗的能力,将脂质组学研究转化为
由于缺乏对氧脂素的生物学了解,临床仍然具有挑战性。为了更好地理解
由于疾病特定变化的临床相关性,我们发现了我们知识中的关键差距,需要弥补
解决了这些问题,包括 1) 哪些机制调节多种氧脂质的协调合成,从而导致
细胞特异性氧脂质模式; 2)如何将个体氧脂蛋白引发的信号整合到
生物学功能。为了弥补我们知识上的这些差距,我们研究计划的长期目标是
破译负责单个氧脂蛋白合成和功能的信号机制
了解它们在疾病中的改变的功能后果。没有进一步的机械见解
由于氧脂质的疾病特异性变化,新型氧脂质不太可能有效地用于临床
目的。血小板是研究氧脂质生物学的理想模型系统,因为它们产生纳摩尔
来自 COX 和 12(S)-脂氧合酶 (12-LOX) 的约 15 种氧脂质水平,并提供简化模型
研究氧脂质失调的生物学后果。在本提案中,我们将重点关注以下功能:
12-LOX 及其花生四烯酸 (AA) 衍生代谢物 12-HETE,具有广泛的临床和生物学作用
意义。然而,由于对12-HETE的功能缺乏共识,12-HETE的作用机制尚不清楚。
LOX 会导致炎症、癌症进展和凝血,这一点存在争议,但代表了重要的因素。
知识差距。该提案将研究 12-LOX 和 12-HETE 作为典型例子,以解决其在
疾病,并开发工具通过使用基因编辑的人类来表征氧脂质的功能
巨核细胞已被证明能够忠实地再现供体来源的血小板。我们的短期
目标是 1) 确定用于释放和递送底物至 12-LOX 的细胞内机制,以及 2)
识别血小板中 12-HETE 激活的下游信号通路。我们的研究将提供
对氧脂素合成和功能的机制理解的宝贵见解,最终可能有助于
为多种疾病开发新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Eric Tourdot其他文献
Benjamin Eric Tourdot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Eric Tourdot', 18)}}的其他基金
The racial disparity in platelet PAR4 signaling enhances thrombus formation
血小板 PAR4 信号传导的种族差异增强血栓形成
- 批准号:
10091614 - 财政年份:2020
- 资助金额:
$ 40.13万 - 项目类别:
The racial disparity in platelet PAR4 signaling enhances thrombus formation
血小板 PAR4 信号传导的种族差异增强血栓形成
- 批准号:
10380592 - 财政年份:2020
- 资助金额:
$ 40.13万 - 项目类别:
The racial disparity in platelet PAR4 signaling enhances thrombus formation
血小板 PAR4 信号传导的种族差异增强血栓形成
- 批准号:
9452668 - 财政年份:2017
- 资助金额:
$ 40.13万 - 项目类别:
Pharmacogenomics studies of PAR4 regulation in human platelets
人血小板 PAR4 调节的药物基因组学研究
- 批准号:
9317529 - 财政年份:2015
- 资助金额:
$ 40.13万 - 项目类别:
Pharmacogenomics studies of PAR4 regulation in human platelets
人血小板 PAR4 调节的药物基因组学研究
- 批准号:
9132042 - 财政年份:2015
- 资助金额:
$ 40.13万 - 项目类别:
Pharmacogenomics studies of PAR4 regulation in human platelets
人血小板 PAR4 调节的药物基因组学研究
- 批准号:
8960415 - 财政年份:2015
- 资助金额:
$ 40.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
- 批准号:
10404415 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Involvement of dopamine signaling in chronic pain-induced negative affective state and nicotine use comorbidity
多巴胺信号传导参与慢性疼痛引起的负面情感状态和尼古丁使用合并症
- 批准号:
10662951 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Mechanisms of Pro-Resolving Mediators in Periodontal Regeneration
牙周再生中促溶解介质的机制
- 批准号:
10764989 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别: