A TOOLKIT FOR IDENTIFYING CAUSAL VARIANTS IN TRANSCRIPTIONAL ENHANCERS

识别转录增强子因果变异的工具包

基本信息

  • 批准号:
    9324326
  • 负责人:
  • 金额:
    $ 31.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our long-term goal is to understand the mechanisms by which sequence variations in enhancers affect gene expression. Genome-wide association study (GWAS) and expression quantitative trait loci (eQTL) mapping have revealed thousands of sequence variants that are associated with common diseases and gene expression variations. A large portion of the associated variants is located far away from genes, making them difficult to interpret. Given its abundance and essential role in gene regulation, sequence variants in transcriptional enhancers could be the cause of many phenotypic variations. Currently, identifying such variants remains a challenge because of several hurdles: i) rudimentary annotation of tissue-specific enhancers; ii) lack of strategies to precisely pinpoint the identity and location of transcription factor binding sites (TFBSs) within an enhancer; and iii lack of strategies to assign enhancer targets. By addressing these hurdles, the objective of this project is to design and test a computational framework that enables systematic and rapid screen of enhancer sequence variants that cause complex diseases. As an ultimate test of our approach, we will apply our computational strategy to screen and characterize enhancer variants that are associated with a common autoimmune disease, Type 1 Diabetes. To make the methods developed in this project useful to a much broader community of users, we will develop an open-source software suite and a database dedicated to the analysis and curation of regulatory mutations in enhancers. It is anticipated that the outcomes of this project will have an important positive impact because it promises to significantly accelerate the discovery and systematic documentation of causal genetic variants in the noncoding portion of the human genome.
描述(由申请人提供):我们的长期目标是了解增强子序列变异影响基因表达的机制。全基因组关联研究 (GWAS) 和表达数量性状位点 (eQTL) 作图揭示了与常见疾病和基因表达变异相关的数千个序列变异。大部分相关变异位于远离基因的位置,使得它们难以解释。鉴于转录增强子的丰富性和在基因调控中的重要作用,转录增强子的序列变异可能是许多表型变异的原因。目前,由于存在几个障碍,识别此类变异仍然是一个挑战:i)组织特异性增强子的基本注释; ii) 缺乏精确定位增强子内转录因子结合位点 (TFBS) 的身份和位置的策略; iii 缺乏分配增强目标的策略。通过解决这些障碍,该项目的目标是设计和测试一个计算框架,能够系统、快速地筛选导致复杂疾病的增强子序列变异。作为对我们方法的最终测试,我们将应用我们的计算策略来筛选和表征与常见自身免疫性疾病 1 型糖尿病相关的增强子变体。为了使该项目中开发的方法对更广泛的用户群体有用,我们将开发一个开源软件套件和一个专门用于分析和管理增强子调控突变的数据库。预计该项目的成果将 重要的积极影响,因为它有望显着加速人类基因组非编码部分中因果遗传变异的发现和系统记录。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Tan其他文献

Kai Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Tan', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10904034
  • 财政年份:
    2023
  • 资助金额:
    $ 31.92万
  • 项目类别:
Data Analysis Core
数据分析核心
  • 批准号:
    10530969
  • 财政年份:
    2022
  • 资助金额:
    $ 31.92万
  • 项目类别:
Data Analysis Core
数据分析核心
  • 批准号:
    10661825
  • 财政年份:
    2022
  • 资助金额:
    $ 31.92万
  • 项目类别:
Data Analysis Unit
数据分析单元
  • 批准号:
    10016229
  • 财政年份:
    2018
  • 资助金额:
    $ 31.92万
  • 项目类别:
Tools for annotating mutations in the 3D cancer genome
用于注释 3D 癌症基因组突变的工具
  • 批准号:
    9899958
  • 财政年份:
    2018
  • 资助金额:
    $ 31.92万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10251225
  • 财政年份:
    2018
  • 资助金额:
    $ 31.92万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10016226
  • 财政年份:
    2018
  • 资助金额:
    $ 31.92万
  • 项目类别:
Data Analysis Unit
数据分析单元
  • 批准号:
    10251228
  • 财政年份:
    2018
  • 资助金额:
    $ 31.92万
  • 项目类别:
Ultrasensitive device for epigenomic profiling of stem cell differentiation
用于干细胞分化表观基因组分析的超灵敏装置
  • 批准号:
    9222865
  • 财政年份:
    2016
  • 资助金额:
    $ 31.92万
  • 项目类别:
EPIGENETIC REGULATION OF STEM CELL FATE CHOICE
干细胞命运选择的表观遗传调控
  • 批准号:
    9119835
  • 财政年份:
    2016
  • 资助金额:
    $ 31.92万
  • 项目类别:

相似国自然基金

算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
  • 批准号:
    72302005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
  • 批准号:
    10667700
  • 财政年份:
    2023
  • 资助金额:
    $ 31.92万
  • 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
  • 批准号:
    10665905
  • 财政年份:
    2023
  • 资助金额:
    $ 31.92万
  • 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 31.92万
  • 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
  • 批准号:
    10737152
  • 财政年份:
    2023
  • 资助金额:
    $ 31.92万
  • 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
  • 批准号:
    10761578
  • 财政年份:
    2023
  • 资助金额:
    $ 31.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了