Calcium Channels, Calmodulin and Nuclear CREB Signaling
钙通道、钙调蛋白和核 CREB 信号传导
基本信息
- 批准号:9306042
- 负责人:
- 金额:$ 40.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAlpha CellAutistic DisorderBindingBiochemicalBiological Neural NetworksBiophysicsBrainCalcium ChannelCalmodulinCell NucleusCellsCellular biologyChelating AgentsChemicalsChimeric ProteinsCommunicationComplexCouplesCouplingCyclic AMP Response ElementCyclic AMP-Responsive DNA-Binding ProteinCytoplasmDNA Sequence AlterationDevelopmentDiffusionDisabled PersonsDiseaseDrug AddictionEgtazic AcidEnzymesEventFamilyFrequenciesFundingGene ExpressionGeneticGenetic TranscriptionGoalsHealthImageIncomeLabelLearningLigandsLinkMembraneMemoryMinorityModificationMolecularMolecular ConformationMovementNail plateNeuronsNuclearNuclear Localization SignalOral cavityPaperPathway interactionsPeripheralPhosphorylationPhosphotransferasesPlayPrivatizationProcessPropertyProtein DephosphorylationProtein Phosphatase 2A Regulatory Subunit PR53RadialResearchResistanceRoleSchemeSecureSerineSignal PathwaySignal TransductionSignaling MoleculeSourceStimulusSumSurfaceSystemTestingTimeTissuesTravelVisionWorkaddictionbasecalmodulin-dependent protein kinase IIcell typeexcitatory neuronknock-downmembermutantneocorticalneuron developmentneuropsychiatric disordernoveloperationprotein expressionpublic health relevanceresponsesmall hairpin RNAsymportertranscription factorvoltage
项目摘要
DESCRIPTION (provided by applicant): Excitation-transcription (E-T) coupling is a process that converts the electrical or chemical activation of a cell to a signal conveyed to the nucleus. n this way, the expression of genes can be modulated in an activity-dependent manner. The neuronal remodeling that results is recognized to be necessary and important for long-term adaptive changes during neuronal development, learning and memory and drug addiction. The most scrutinized example of E-T coupling is Ca2+ signaling to the transcription factor CREB (cAMP response element-binding) protein via phosphorylation at Ser133. As an important source of Ca2+ influx, voltage-gated Ca2+ channels have been well studied for their biophysical and biochemical properties. Interestingly, in E-T coupling it seems that Ca2+ influxes through different Ca2+ channels can engage different signaling pathways to the nucleus. For example, CaV1 (also called L-type) channels enjoy a big advantage over CaV2 channels, even though CaV1 channels contribute only a minority of the overall Ca2+ entry in neurons. Our recent Cell paper uncovered that this disparity in potency can be explained by differences in how the two classes of Ca2+ channels employ local and global Ca2+ signaling. However, the 'private line' for the nanodomain advantage of CaV1 channels is unclear. Now we are poised to provide a detailed characterization of the critical question: what carries the long-distance signal from CaV1-anchored signaling complex to the nucleus? We have an answer: Ca2+/CaM translocation to the nucleus depends on a co-transporter that we now identify as γCaMKII. This shuttle gathers cytoplasmic Ca2+/CaM, sequestering it at the CaV1 channel before traveling to the nucleus under control of a nuclear localization signal. This signaling mechanism relies on γCaMKII, βCaMKII and CaN, signaling molecules that operate in the CaV1 nanodomain and also have been implicated in multiple neuropsychiatric diseases. This proposal focuses on understanding the cellular machinery of γCaMKII/CaM translocation and three specific aims are proposed. (1) Define the dynamics of Ca2+ signaling mechanisms that link CaV1 activity to nuclear CREB phosphorylation and CRE-dependent transcription. We will track γCaMKII translocation in real time and assess the impact of Ca2+/CaM delivered to the nucleus via this shuttle mechanism. (2) We will manipulate the γCaMKII pathway using genetic constructs in order to nail down the molecular components required for CREB phosphorylation. We will alter binding interactions and enzymatic actions involving CaM, βCaMKII, CaN, and PP2A at critical steps along the pathway. (3) Understand CaV1-dependent CaM shuttling in neocortical neurons and define distinct roles of nanodomain Ca2+ signaling and voltage gated conformational signaling for E-T coupling. Gaining a clearer picture of the linkage between CaV1 channels and CREB signaling will have a favorable impact on understanding how changes in gene expression alter the function of neurons in neural networks. Thus, the research is relevant both to basic cell
biology and to disease states as diverse as addiction, autism and other neuropsychiatric diseases.
描述(由申请人提供):激发-转录(E-T)耦合是将细胞的电或化学激活转化为传递到细胞核的信号的过程,通过这种方式,可以以活性调节基因的表达。所产生的神经元重塑被认为对于神经发育、学习和记忆以及药物成瘾过程中的长期适应性变化是必要且重要的。 E-T 耦合最受关注的例子是 Ca2+ 信号传导。转录因子 CREB(cAMP 反应元件结合)蛋白通过 Ser133 磷酸化作为 Ca2+ 流入的重要来源,电压门控 Ca2+ 通道的生物物理和生化特性已得到充分研究,在 E-T 耦合中似乎 Ca2+ 流入。通过不同的 Ca2+ 通道可以参与不同的信号通路到达细胞核,例如,CaV1(也称为 L 型)通道比 CaV2 通道具有很大的优势,尽管 CaV1 通道。我们最近的《细胞》论文发现,这种效力差异可以通过两类 Ca2+ 通道如何使用局部和全局 Ca2+ 信号传导的差异来解释。 CaV1 通道的纳米域优势尚不清楚。现在我们准备提供关键问题的详细表征:什么将长距离信号从 CaV1 锚定的信号复合物传递到细胞核?答案:Ca2+/CaM 向细胞核的易位取决于我们现在识别为 γCaMKII 的协同转运蛋白。该穿梭机收集细胞质 Ca2+/CaM,在核定位信号的控制下将其隔离在 CaV1 通道上。信号传导机制依赖于 γCaMKII、βCaMKII 和 CaN,这些信号分子在 CaV1 纳米结构域中起作用,并且与多种神经精神疾病有关该提案的重点是了解 γCaMKII/CaM 易位的细胞机制,并提出了三个具体目标(1)定义将 CaV1 活性与核 CREB 磷酸化和 CRE 依赖性转录联系起来的 Ca2+ 信号传导机制。实时易位并评估通过这种穿梭机制传递到细胞核的 Ca2+/CaM 的影响 (2) 我们将使用遗传构建体操纵 γCaMKII 途径。确定 CREB 磷酸化所需的分子成分,我们将改变该通路关键步骤中涉及 CaM、βCaMKII、CaN 和 PP2A 的结合相互作用和酶作用。 (3) 了解新皮质神经元中依赖 CaV1 的 CaM 穿梭并定义不同的作用。纳米结构域 Ca2+ 信号传导和电压门控构象信号传导的 E-T 耦合的研究 更清楚地了解 CaV1 通道和 CREB 信号传导之间的联系将产生有利的影响。理解基因表达的变化如何改变神经网络中神经元的功能因此,这项研究与基本细胞相关。
生物学和各种疾病状态,如成瘾、自闭症和其他神经精神疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD W TSIEN其他文献
RICHARD W TSIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD W TSIEN', 18)}}的其他基金
Calcium Channels, CaMKII and Mechanisms of Excitation-Transcription Coupling
钙通道、CaMKII 和兴奋转录偶联机制
- 批准号:
10522762 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Calcium Channels, CaMKII and Mechanisms of Excitation-Transcription Coupling
钙通道、CaMKII 和兴奋转录偶联机制
- 批准号:
10636887 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10676011 - 财政年份:2022
- 资助金额:
$ 40.26万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10705986 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
BrainSTEM - An e-age Experimental Neuroscience Lab Notebook
BrainSTEM - 电子时代实验神经科学实验室笔记本
- 批准号:
10609170 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
Biophysical and Circuit Mechanisms of OXTR signaling
OXTR信号的生物物理和电路机制
- 批准号:
10220158 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10438587 - 财政年份:2018
- 资助金额:
$ 40.26万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Suprachiasmatic nucleus to kisspeptin circuit in the circadian control of reproduction
视交叉上核至 Kisspeptin 回路在生殖昼夜节律控制中的作用
- 批准号:
10660156 - 财政年份:2023
- 资助金额:
$ 40.26万 - 项目类别:
Alpha-Synuclein aberrantly modifies the nanoscale distribution and function of ion channels to promote neuronal cytotoxicity
α-突触核蛋白异常地改变离子通道的纳米级分布和功能以促进神经元细胞毒性
- 批准号:
10635208 - 财政年份:2023
- 资助金额:
$ 40.26万 - 项目类别:
Alpha-synuclein driven cellular changes and vocal dysfunction in Parkinson's Disease
帕金森病中α-突触核蛋白驱动的细胞变化和发声功能障碍
- 批准号:
10283440 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Membrane contact sites regulate cellular excitability
膜接触位点调节细胞兴奋性
- 批准号:
10524750 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Engineering a power switch to study the contribution of stem cell-derived cardiomyocytes on heart regeneration
设计电源开关来研究干细胞衍生的心肌细胞对心脏再生的贡献
- 批准号:
10655525 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别: