Engineering Multicellular Tissue Structure, Function, and Vascularization
工程多细胞组织结构、功能和血管化
基本信息
- 批准号:9305084
- 负责人:
- 金额:$ 74.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAnimal ModelAnimalsArchitectureArtificial LiverBiocompatible MaterialsBiological ModelsBloodBlood VesselsCartilageCell CommunicationCell physiologyCellsCommunicationCommunitiesComplexDependenceDevelopmentDiseaseEndothelial CellsEngineeringEngraftmentGoalsHepatectomyHepatic TissueHepatocyteHomoHumanHuman EngineeringHydrogelsHypoxiaImplantIn VitroLifeLiverLiver FailureLiver RegenerationMediatingMetabolicMethodsNatural regenerationNutrientOrganOrgan TransplantationOxygenParacrine CommunicationPatientsPatternPerfusionPeritonealPhysiologicalPlayPopulationPositioning AttributeProcessRegenerative MedicineRegenerative responseRegulationResearch PersonnelRoleSignal TransductionSkinSolidSourceStimulusStreamStromal CellsStructureTechnologyTestingTissue EngineeringTissue SurvivalTissuesTransplantationTyrosinemiasVascular Endothelial CellVascular blood supplyVascularizationVisionbioprintingcell typechronic liver diseasedefined contributionengineering designimplantationimprovedimproved functioningin vivoliver developmentliver injurymouse modelnetwork architecturenovelparacrinepublic health relevanceregenerativeresponseshear stresssuccesstool
项目摘要
DESCRIPTION: The goal of this project is to define multicellular interactions in engineered hepatic tissue that will enable its engraftment and expansion in a living host. In vivo, cell-to-cel communication and cooperation mediated through juxtacrine and paracrine signals is a hallmark of multicellular life, and is thought to play a critical role in the establishment of native tissue
functions. Specifically in liver, such interactions appear to be critical for tissue function and regeneration. Unfortunately, few tools currently exist to manipulate multicellular spatial organization; thus little is known about the true impact of tissue architecture to tissue function.
During the past 4 years of this collaborative project, the investigators have shown that biomaterials can be used to support the transplantation and peritoneal engraftment of human engineered artificial livers composed of randomly- organized human hepatocytes, endothelial cells and stromal cells. Then, by using novel microtechnology tools to control the organization of these cell types within a 3D context, the team has shown that architecture impacts both the differentiated state of the hepatocyte and the function of the transplanted graft. In addition, the
investigators have developed bioprinting tools to build vascular networks in these 3D hydrogels and demonstrated that these improve the survival of co-embedded hepatocytes as well as methods to prevacularize hepatic tissues and thereby accelerate the peritoneal engraftment. In these model systems, we observe that there is a reciprocal interaction via paracrine signals- that is endothelial cells impact hepatocyte function and conversely that hepatocytes impact the endothelial network. Interestingly, many of the paracrine signals are interrelated with perfusion of the network as they are regulated either by shear stress, hypoxia or both. In the current application, the investigators seek to define the spatial dependence on paracrine signaling and perfusion within engineered livers that would efficiently allow them to engraft and expand upon stimulation. The specific aims of this competitive renewal are: (1) To define the role of 3D positioning on paracrine signaling between hepatocytes and endothelial cells in vitro and in vivo, (2) To understand the role of network perfusion on cell function in 3D constructs in vitro and in vivo, and (3) To assess the functional role of network architecture and perfusion on graft expansion in vivo. This project will lead to an integrated understanding of the role of multicellulr organization and cell-cell communication in stabilizing hepatic tissue vascularization and function, and provide new tools and strategies to the broader community to engineer complex multicellular tissues.
描述:该项目的目标是定义工程肝组织中的多细胞相互作用,使其能够在活体宿主中植入和扩增。通过近分泌和旁分泌信号介导的细胞间通讯和合作是多细胞的标志。生命,并被认为在天然组织的建立中发挥着关键作用
特别是在肝脏中,这种相互作用似乎对组织功能和再生至关重要,但目前很少有工具可以操纵多细胞空间组织,因此人们对组织结构对组织功能的真正影响知之甚少。
在这个合作项目的过去四年中,研究人员已经证明,生物材料可用于支持由随机组织的人类肝细胞、内皮细胞和基质细胞组成的人类工程人工肝脏的移植和腹膜植入,然后通过使用新型材料。通过微技术工具在 3D 背景下控制这些细胞类型的组织,该团队已证明结构会影响肝细胞的分化状态和移植物的功能。
研究人员开发了生物打印工具来在这些 3D 水凝胶中构建血管网络,并证明这些工具可以提高共嵌入肝细胞的存活率,以及使肝组织预空化的方法,从而加速腹膜植入。通过旁分泌信号的相互作用,即内皮细胞影响肝细胞功能,反之肝细胞影响内皮网络。旁分泌信号与网络的灌注相互关联,因为它们受到剪切应力、缺氧或两者的调节。在当前的应用中,研究人员试图定义工程肝脏内旁分泌信号和灌注的空间依赖性,从而有效地允许它们植入。并扩展这种竞争性更新的具体目标是:(1) 定义 3D 定位对体外和体内肝细胞和内皮细胞之间的旁分泌信号传导的作用,(2)了解网络灌注对体外和体内 3D 构建体中细胞功能的作用,以及 (3) 评估网络结构和灌注对体内移植物扩张的功能作用。多细胞组织和细胞间通讯在稳定肝组织血管化和功能中的作用,并为更广泛的社区提供新的工具和策略来设计复杂的多细胞组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANGEETA N. BHATIA其他文献
SANGEETA N. BHATIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANGEETA N. BHATIA', 18)}}的其他基金
Synthetic vascularization and regeneration in engineered tissues
工程组织中的合成血管化和再生
- 批准号:
10566387 - 财政年份:2023
- 资助金额:
$ 74.26万 - 项目类别:
Infection-homing nanosystems as antibacterial therapeutics-delivery platforms
作为抗菌治疗传递平台的感染归巢纳米系统
- 批准号:
10205961 - 财政年份:2017
- 资助金额:
$ 74.26万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
7764021 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
8134464 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Engineering Multicellular Tissue Structure, Function, and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
9120857 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
8242801 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
7935261 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
7626617 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
8322073 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 74.26万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 74.26万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 74.26万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 74.26万 - 项目类别:
Regulatory Mechanisms Linking Spatial Gene Control and Genome Organization
连接空间基因控制和基因组组织的调控机制
- 批准号:
10712390 - 财政年份:2023
- 资助金额:
$ 74.26万 - 项目类别: