The role of autophagy in Kras-driven lung cancer
自噬在 Kras 驱动的肺癌中的作用
基本信息
- 批准号:9321425
- 负责人:
- 金额:$ 20.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAcademiaAdenocarcinomaAnoikisAntineoplastic AgentsAutophagocytosisBackBenignBiological SciencesBiologyCRISPR/Cas technologyCancer BiologyCancer Institute of New JerseyCancer PatientCarcinomaCell AdhesionCell Cycle RegulationCell DeathCell LineCell SurvivalComprehensive Cancer CenterCystDefectDoctor of PhilosophyEnvironmentFundingGenesGenetic EngineeringGenetic studyGenus HippocampusGoalsGrowthHomeostasisHumanHypoxiaImpairmentInstitutesInstitutionInstructionKRAS2 geneKnock-outLaboratoriesLaboratory ResearchLarge Cell CarcinomaLeadershipLipidsLungLung NeoplasmsMaintenanceMalignant NeoplasmsMalignant neoplasm of lungMentorsMetabolicMetabolic stressMetabolismMissense MutationMitochondriaModelingMolecularMolecular TargetMusMutateMutationNeoplasm MetastasisNon-Small-Cell Lung CarcinomaNormal CellNormal tissue morphologyOncogenicOrganellesOxyphilic AdenomaPathway interactionsPharmaceutical PreparationsPre-Clinical ModelProcessProgram DevelopmentProtein p53Protein-Serine-Threonine KinasesProteinsQuality ControlRAS inhibitionRegulationResearchResearch AssistantResearch PersonnelResearch TrainingRoleSTK11 geneScientistSiteSomatic MutationSquamous cell carcinomaStarvationStressSurvival RateTP53 geneTestingTetanus Helper PeptideTherapeuticTrainingTransgenic MiceTransition Career Development Award (K22)Tumor BurdenTumor SuppressionTumor-DerivedUnited States National Institutes of HealthUniversitiesWomanadenylate kinaseanticancer researchcancer cellcancer geneticscancer subtypescancer therapycareerfatty acid oxidationgain of functiongenetic makeupinhibition of autophagyinnovationleadership developmentmeetingsmenmetabolomicsmitochondrial autophagymortalitymouse modelmutantmutational statusneoplastic cellnext generation sequencingnovelnovel strategiesnovel therapeutic interventionnovel therapeuticspreventprofessorpublic health relevanceresponsesmall hairpin RNAtranslational approachtumortumor growthtumor metabolismtumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Lung cancer is the most common cancer and has the highest mortality in the US. Tumor metastasis is the major cause of mortality for non-small-cell lung cancer (NSCLC) patients. About 85%-90% of lung cancers are NSCLC and somatic mutations in oncogenic Ras and the tumor suppressor p53 or LKB1 are frequently detected in NSCLC. Unfortunately effective drugs that directly target Ras, p53 or LKB1 have so far not succeeded for cancer therapy. This project investigates the role of autophagy on Kras-driven lung cancer with the ultimate goal of providing a new strategy for lung cancer therapy. Autophagy is a protective process that is activated in response to stress in order to recycle cellular components to maintain homeostasis. During the last five years in the White laboratory, Dr. (Jessie) Yanxiang Guo discovered that cancer cells with Ras activation require autophagy for maintenance of functional mitochondria, for tolerance of metabolic stress and for tumorigenesis. Using two genetic engineered mouse models (GEMMs) for Kras-driven NSCLC with or without p53 and concurrent deletion of essential autophagy gene, autophagy-related-7, Atg7, Dr. Guo found that autophagy deficiency altered the fate of KrasG12D-induced carcinomas to rare, predominantly benign oncocytomas, caused accumulation of defective mitochondria and reduced the tumor growth. With the additional loss of p53, autophagy deficiency impaired mitochondrial fatty acid oxidation (FAO) resulting in defective lipid homeostasis and exquisite sensitivity to metabolic stress. These results suggest that Ras-driven cancers may be susceptible to autophagy inhibition therapy. In this NIH Transition Career Development Award, Dr. Guo, supported by her mentor Dr. Eileen White and her collaborators, plans to test the central hypothesis that autophagy is important for metabolism and growth of lung cancer in the following specific aims: Aim 1 is to determine the extent to which suppression of tumor growth by Atg7 deficiency is reversible and how autophagy inhibition differentially impacts tumor compared to normal tissue; Aim 2 is to determine if autophagy is required to suppress oncocytoma formation and to maintain lipid homeostasis in KrasG12D-driven NSCLC with p53 missense mutations; and Aim 3 is to determine if and how autophagy inhibition impacts Kras-driven lung cancer metastasis. State-of-the-art metabolomic and lipidomic analysis will be used to determine the mechanism by which autophagy regulates cancer metabolism and growth. This project will develop innovative pre-clinical models to determine the role of autophagy in lung cancer and will identify metabolic vulnerabilities created by the altered metabolism. These findings will provide novel translational approaches for Kras-driven lung cancer therapy by dual inhibition of Ras downstream effector pathways and autophagy. Dr, Guo obtained her formalized research training in Dr. Sally Kornbluth 's laboratory at Duke University where she focused on the regulation of cell cycle and cell death in cancer, earning a Ph.D. degree in Molecular Cancer Biology. Currently, Dr. Guo is an Assistant Research Professor in Dr. White's laboratory at Rutgers Cancer Institute of New Jersey (RCINJ) where she has been studying the function of autophagy in regulating Ras-driven cancer metabolism. Dr. Guo's immediate and long-term career goals are to: 1) become a NIH funded independent investigator focusing on metabolism of lung cancer; 2) develop into a leader of a dedicated group of scientists that focus on lung cancer at an NCI-designated comprehensive cancer center or a world-class research university or institute with an excellent scientific environment; and 3) identify new molecular targets for anti-cancer drugs. Dr. Guo will accomplish these goals with three major components: 1) Laboratory research: Dr. Guo will execute her research plan outlined above with full support from Dr. White. She will also receive support and instruction from her collaborators including: Dr. Josh Rabinowitz, a recognized leader in metabolomics at Princeton University, in the use of metabolomics to interrogate cancer metabolism; Dr. Yibing Kang, a recognized leader in cancer metastasis at Princeton University, in novel approaches to interrogate metastasis; Dr. Arnold Levine, a widely acclaimed leader in cancer research and p53 biology at Institute of Advanced Study and RCINJ, to elucidate p53 function and regulation in cancer; Dr. Chan Chang, an expert in the use of Next Generation Sequencing in the study of genetics of cancer at RCINJ; and Dr. Narita at Cancer Research UK, Cambridge Institute, who is generating an inducible Tet-on-shRNA-Atg5 shRNA mouse model that will be provided to Dr. Guo. 2) Didactics: Dr. Guo has and will continue to receive hands-on metabolomics training provided by Dr. Rabinowitz's group. She will take two courses "Introductory XF Training" and "Advanced XT Training" provided by Seahorse Biosciences to study cancer cell metabolism using a Seahorse Bioscience XF Analyzer. She will receive on-site training from Dr. Kang and join his lab meetings to further develop expertise in tumor metastasis. She will also obtain technical advise from Dr. Narita to help successfully generate the Tet-on-shRNA-Atg7 mouse model she proposed. 3) Professional/Leadership Development: Dr. Guo will attend "The objective Analysis of Self and Institution Seminar (OASIS): Leadership and Professional Development Program" offered by Rutgers University for women to help her develop as a leader in academia.
描述(申请人提供):肺癌是美国最常见的癌症,死亡率最高,肿瘤转移是非小细胞肺癌(NSCLC)患者死亡的主要原因。肺癌的大部分是 NSCLC,并且在 NSCLC 中经常检测到致癌 Ras 和肿瘤抑制因子 p53 或 LKB1 的体细胞突变,不幸的是,直接靶向 Ras、p53 或 LKB1 的有效药物。迄今为止,该项目研究了自噬在 Kras 驱动的肺癌中的作用,最终目标是为肺癌治疗提供一种新策略。自噬是一种响应压力而激活的保护过程。回收细胞成分以维持体内平衡 在怀特实验室的过去五年中,(Jessie)郭彦翔博士发现,Ras 激活的癌细胞需要自噬来维持功能性线粒体、耐受代谢应激和维持正常功能。郭博士使用两种Kras驱动的非小细胞肺癌基因工程小鼠模型(GEMM),在有或没有p53的情况下,同时删除必需的自噬基因,自噬相关7,Atg7,发现自噬缺陷改变了KrasG12D诱导的命运。癌症到罕见的、主要是良性的嗜酸细胞瘤,会导致有缺陷的线粒体积累,并随着 p53 的额外损失而减少肿瘤的生长,自噬缺陷会损害线粒体脂肪。酸氧化 (FAO) 导致脂质稳态缺陷和对代谢应激的敏感度这些结果表明 Ras 驱动的癌症可能容易受到自噬抑制疗法的影响,郭博士在她的导师博士的支持下获得了这项 NIH 职业发展奖。 Eileen White 和她的合作者计划测试自噬对于肺癌代谢和生长很重要的中心假设,其具体目标如下: 目标 1 是确定自噬抑制肿瘤生长的程度Atg7 缺陷是可逆的,以及与正常组织相比,自噬抑制如何对肿瘤产生不同的影响;目标 2 是确定在具有 p53 错义突变的 KrasG12D 驱动的 NSCLC 中是否需要自噬来抑制嗜酸细胞瘤形成并维持脂质稳态;自噬抑制是否以及如何影响 Kras 驱动的肺癌转移将使用最先进的代谢组学和脂质组学分析来确定。该项目将开发创新的临床前模型来确定自噬在肺癌中的作用,并识别代谢产生的代谢脆弱性,这些发现将为 Kras 驱动的肺癌提供新的转化方法。通过双重抑制 Ras 下游效应通路和自噬进行癌症治疗 郭博士在杜克大学 Sally Kornbluth 博士的实验室接受了正式的研究培训,专注于细胞周期和细胞死亡的调节。郭博士拥有癌症博士学位,目前是新泽西州罗格斯癌症研究所 (RCINJ) White 博士实验室的助理研究教授,主要研究细胞自噬的功能。郭博士的近期和长期职业目标是:1) 成为 NIH 资助的专注于肺癌代谢的独立研究者;2) 成为专注于肺癌代谢的科学家团队的领导者。在 NCI 指定的综合癌症中心或具有优良科学环境的世界一流研究大学或研究所进行肺癌研究;3)确定抗癌药物的新分子靶标,郭博士将通过三个主要部分来实现这些目标: 1) 实验室研究:郭博士将在 White 博士的全力支持下执行上述研究计划,她还将得到合作者的支持和指导,其中包括:普林斯顿大学代谢组学领域公认的领导者 Josh Rabinowitz 博士。使用研究癌症代谢的代谢组学;Yibing Kang 博士,普林斯顿大学癌症转移领域公认的领导者,研究转移的新方法;Arnold Levine 博士,高级研究所和 RCINJ 癌症研究和 p53 生物学领域公认的领导者,阐明 p53 在癌症中的功能和调控;Chan Chang 博士,RCINJ 癌症遗传学研究中使用下一代测序的专家;剑桥研究所英国癌症研究中心的 Narita 博士正在生成可诱导的 Tet-on-shRNA-Atg5 shRNA 小鼠模型,该模型将提供给郭博士 2) 教学:郭博士已经并将继续接受人工治疗。 - Rabinowitz 博士团队提供的代谢组学培训 她将参加 Seahorse Biosciences 提供的两门课程“入门 XF 培训”和“高级 XT 培训”,以使用代谢组学研究癌细胞代谢。她将接受 Kang 博士的现场培训并参加他的实验室会议,以进一步发展肿瘤转移方面的专业知识,她还将获得 Narita 博士的技术建议,以帮助成功生成 Tet-on-shRNA-。 3)专业/领导力发展:郭博士将参加罗格斯大学为女性提供的“自我与机构客观分析研讨会(OASIS):领导力与专业发展计划”。她成长为学术界的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanxiang Guo其他文献
Yanxiang Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanxiang Guo', 18)}}的其他基金
Targeting autophagy to increase the sensitivity of LKB1-deficient lung tumors to angiogenesis inhibitor
靶向自噬提高 LKB1 缺陷型肺部肿瘤对血管生成抑制剂的敏感性
- 批准号:
10669269 - 财政年份:2022
- 资助金额:
$ 20.96万 - 项目类别:
Targeting autophagy to increase the sensitivity of LKB1-deficient lung tumors to angiogenesis inhibitor
靶向自噬提高 LKB1 缺陷型肺部肿瘤对血管生成抑制剂的敏感性
- 批准号:
10770658 - 财政年份:2022
- 资助金额:
$ 20.96万 - 项目类别:
Elucidate the mechanism of autophagy in supporting Lkb1-deficient lung tumorigenesis and metastasis
阐明自噬支持 Lkb1 缺陷型肺肿瘤发生和转移的机制
- 批准号:
10329966 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Elucidate the mechanism of autophagy in supporting Lkb1-deficient lung tumorigenesis and metastasis
阐明自噬支持 Lkb1 缺陷型肺肿瘤发生和转移的机制
- 批准号:
10545748 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Elucidate the mechanism of autophagy in supporting Lkb1-deficient lung tumorigenesis and metastasis
阐明自噬支持 Lkb1 缺陷型肺肿瘤发生和转移的机制
- 批准号:
10063978 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
Elucidate the mechanism of autophagy in supporting Lkb1-deficient lung tumorigenesis and metastasis
阐明自噬支持 Lkb1 缺陷型肺肿瘤发生和转移的机制
- 批准号:
9885542 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
相似海外基金
Development of A Multi-Modality System for Onco-Imaging
肿瘤成像多模态系统的开发
- 批准号:
7669183 - 财政年份:2007
- 资助金额:
$ 20.96万 - 项目类别:
Development of A Multi-Modality System for Onco-Imaging
肿瘤成像多模态系统的开发
- 批准号:
7316114 - 财政年份:2007
- 资助金额:
$ 20.96万 - 项目类别:
Development of A Multi-Modality System for Onco-Imaging
肿瘤成像多模态系统的开发
- 批准号:
7890512 - 财政年份:2007
- 资助金额:
$ 20.96万 - 项目类别:
REU in Functional Genomics and Cell Biology
REU 在功能基因组学和细胞生物学中的应用
- 批准号:
7226706 - 财政年份:2005
- 资助金额:
$ 20.96万 - 项目类别: