Digital Mammography: Advanced Computer-Aided Breast Can*

数字乳房X光检查:先进的计算机辅助乳房检查*

基本信息

  • 批准号:
    6753540
  • 负责人:
  • 金额:
    $ 49.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The major goals of the proposed research are (1) to develop a computer-aided diagnosis (CAD) system for full field digital mammography (FFDM) using advanced computer vision techniques and (2) to evaluate the effects of CAD on interpretation of DMs. Previous CAD methods for lesion (mass and microcalcification) detection and characterization have been designed for digitized film mammograms and have generally been based on image features extracted from a single view. Our proposed approach is distinctly different from the previous approaches in that image information from two-view mammograms and bilateral mammograms will be fused using machine intelligence techniques. This fundamental change will expand the amount of information utilized in CAD and is expected to improve lesion detection and characterization. New computer vision techniques will be specifically designed for FFDM in order to exploit the advantages offered by digital detectors. This will produce a CAD system that is integrated with and takes full advantage of the latest imaging technologies to further improve the health care of women. We hypothesize that these advanced multiple-image information fusion techniques will lead to a more effective CAD system for FFDMs in comparison to a single-image approach, and that the CAD system will significantly improve radiologists' accuracy in the four most important areas of mammography: (i) detection of masses, (ii) classification of masses, (iii) detection of microcalcifications, and (iv) classification of microcalcifications. A database of digital mammograms (DMs) with malignant and benign lesions and a set of normal cases will be collected. We will first adapt our current film-based CAD algorithms to DMs in each of the four areas, taking into account the differences in the imaging characteristics between DMs and digitized mammograms. New computer vision techniques will then be developed to improve upon the current methods and to exploit the potential advantages of the high contrast sensitivity, high detective quantum efficiency, wide dynamic range, and the linear response to x-ray intensity of digital detectors. Novel regional registration methods for identifying corresponding lesions on CC and MLO views and for comparing the density symmetry on bilateral mammograms will be developed. Innovative fuzzy classification schemes will be designed to fuse multiple-image information and one-view information to reduce false positives and to improve detection sensitivity. Multiple-view morphological and texture features of a lesion will be merged using neural networks or other statistical classifiers for characterization of malignant and benign lesions. To test the hypotheses, we will (1) compare the performance of the multiple-image fusion CAD algorithm for DMs in each area to that of the corresponding one-view algorithm, (2) compare the detection accuracy of masses and microcalcifications on DMs with and without CAD by observer ROC studies, and (3) compare the classification accuracy of masses and microcalcifications on DMs with and without CAD by observer ROC studies. It is expected that this research will not only lead to an effective CAD system for FFDM, the multiple-image fusion approach and the new computer vision techniques will also advance CAD technology for mammography in general.
描述(由申请人提供):拟议研究的主要目标是(1)使用先进的计算机视觉技术和(2)评估CAD对DMS解释的影响。先前用于病变(质量和微钙化)检测和表征的CAD方法已设计用于数字化膜X线照片,通常是基于从单视图中提取的图像特征。我们提出的方法与以前的方法明显不同,因为该图像信息来自两视乳房X线照片,并且使用机器智能技术融合了双边乳房X线照片。这种基本变化将扩大CAD中使用的信息量,并有望改善病变检测和表征。新的计算机视觉技术将专门为FFDM设计,以利用数字探测器提供的优势。这将产生与最新成像技术相结合并充分利用的CAD系统,以进一步改善女性的医疗保健。 We hypothesize that these advanced multiple-image information fusion techniques will lead to a more effective CAD system for FFDMs in comparison to a single-image approach, and that the CAD system will significantly improve radiologists' accuracy in the four most important areas of mammography: (i) detection of masses, (ii) classification of masses, (iii) detection of microcalcifications, and (iv) classification of microcalcifications.将收集具有恶性和良性病变以及一组正常情况的数字乳房X线照片(DMS)数据库。考虑到DMS和数字化乳房X线照片之间的成像特征的差异,我们将首先将目前的基于膜的CAD算法调整为四个区域的DMS。然后将开发新的计算机视觉技术,以改善当前方法,并利用高对比度灵敏度,高侦探量子效率,广泛的动态范围以及对数字检测器X射线强度的线性响应的潜在优势。将开发出用于识别CC和MLO视图上相应病变的新型区域注册方法以及比较双边乳房X线照片上的密度对称性。创新的模糊分类方案将旨在融合多图像信息和单视信息,以减少误报并提高检测灵敏度。病变的多形形态和纹理特征将使用神经网络或其他统计分类器合并,以表征恶性病变和良性病变。要测试假设,我们将(1)比较每个区域的多图像融合CAD算法的性能与相应的一视算法的表现,(2)比较质量和无需CAD的DMS的质量和微钙化的检测准确性,并与Observer Roc Restivic and(3)相比,以及3)的分类,以及(3)的分类,以及3)的分类精确度,以及3)的精确率,以及3)观察者ROC研究的CAD。可以预期,这项研究不仅会导致FFDM的有效CAD系统,多图像融合方法和新的计算机视觉技术也将推动乳房X线摄影的CAD技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HEANG-PING CHAN其他文献

HEANG-PING CHAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HEANG-PING CHAN', 18)}}的其他基金

Advanced breast tomosynthesis reconstruction for improved cancer diagnosis
先进的乳房断层合成重建可改善癌症诊断
  • 批准号:
    10323267
  • 财政年份:
    2018
  • 资助金额:
    $ 49.26万
  • 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
  • 批准号:
    8327742
  • 财政年份:
    2011
  • 资助金额:
    $ 49.26万
  • 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
  • 批准号:
    8514397
  • 财政年份:
    2011
  • 资助金额:
    $ 49.26万
  • 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
  • 批准号:
    8108142
  • 财政年份:
    2011
  • 资助金额:
    $ 49.26万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8206668
  • 财政年份:
    2010
  • 资助金额:
    $ 49.26万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8392109
  • 财政年份:
    2010
  • 资助金额:
    $ 49.26万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8032999
  • 财政年份:
    2010
  • 资助金额:
    $ 49.26万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8586273
  • 财政年份:
    2010
  • 资助金额:
    $ 49.26万
  • 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
  • 批准号:
    7498781
  • 财政年份:
    2006
  • 资助金额:
    $ 49.26万
  • 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
  • 批准号:
    7080103
  • 财政年份:
    2006
  • 资助金额:
    $ 49.26万
  • 项目类别:

相似国自然基金

基于生物医学谱学成像技术结合人工智能算法对心源性猝死鉴定的法医学研究
  • 批准号:
    82072115
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
生物医学光学成像
  • 批准号:
    81925022
  • 批准年份:
    2019
  • 资助金额:
    400 万元
  • 项目类别:
    国家杰出青年科学基金
结合超高速超声成像和磁声成像的超声-电导率成像新方法研究
  • 批准号:
    81871429
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
在体微循环代谢功能检测评估方法研究
  • 批准号:
    81871396
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
VHF脉冲热声成像技术研究
  • 批准号:
    61871083
  • 批准年份:
    2018
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAD in Breast MRI based on Biological Neural Network
基于生物神经网络的乳腺MRI CAD
  • 批准号:
    6875352
  • 财政年份:
    2005
  • 资助金额:
    $ 49.26万
  • 项目类别:
CAD in Breast MRI based on Biological Neural Network
基于生物神经网络的乳腺MRI CAD
  • 批准号:
    7123824
  • 财政年份:
    2005
  • 资助金额:
    $ 49.26万
  • 项目类别:
Digital Mammography: Advanced Computer-Aided Breast Can*
数字乳房X光检查:先进的计算机辅助乳房检查*
  • 批准号:
    7088818
  • 财政年份:
    2003
  • 资助金额:
    $ 49.26万
  • 项目类别:
Digital Mammography: Advanced Computer-Aided Breast Can*
数字乳房X光检查:先进的计算机辅助乳房检查*
  • 批准号:
    6903375
  • 财政年份:
    2003
  • 资助金额:
    $ 49.26万
  • 项目类别:
Digital Mammography: Advanced Computer-Aided Breast Can*
数字乳房X光检查:先进的计算机辅助乳房检查*
  • 批准号:
    6574171
  • 财政年份:
    2003
  • 资助金额:
    $ 49.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了