Development of a high-sensitivity 13C NMR probe for metabolomics
开发用于代谢组学的高灵敏度 13C NMR 探针
基本信息
- 批准号:9238907
- 负责人:
- 金额:$ 32.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-05 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AgricultureAreaBiologicalCarbohydratesCellsChemicalsCommunitiesComplexCoupledCouplingCustomDataData AnalyticsDatabasesDetectionDevelopmentDiseaseEducational workshopEnvironmental Risk FactorFoodFractionationFundingGeneticGenotypeGoalsHealthHigh Pressure Liquid ChromatographyHigh temperature of physical objectHourHumanIndividualIndustryInjection of therapeutic agentIsotopesMass Spectrum AnalysisMeasurementMeasuresMethodsNMR SpectroscopyNatural ProductsNoiseNutritionalPerformancePersonsPharmacologic SubstancePhasePhenotypePlayPreparationProtocols documentationPublicationsReproducibilityResearchResearch PersonnelResolutionRoleSample SizeSamplingSerumSignal TransductionSolidSystemSystems BiologyTechnologyTestingTimeUnited States National Institutes of HealthUniversitiesbasecommercializationdesigndetectorexperimental studygenetic makeuphigh sensitivity probeimprovedinterestmagnetic fieldmetabolomicsmetabolomics resourcemicrobiomenovelnovel strategiesoperationprecision medicineprogramstemporal measurementvirtual
项目摘要
Project Summary
Metabolites are sensitive to genetic and environmental factors, and as a result are good indicators of disease
or phenotype. The overall goal of metabolomics is the measurement of all metabolites associated with a
specific disease, treatment, genotype, etc. Combined with other `omics, metabolomics is becoming
indispensable in systems biology studies, precision medicine, food and agricultural industry, and cell-based
pharmaceuticals. The major difficulty in metabolomics is the reliable and reproducible identification and
quantification of metabolites. Analytical technologies such as NMR and LC-MS can provide hundreds to tens of
thousands of peaks from metabolomics samples, but efficiently quantifying these peaks and confidently
assigning them to real metabolites remains a significant challenge. The standard approach to NMR
metabolomics is to detect 1H, because it is both abundant and sensitive. The problem with 1H NMR is that
peaks are often overlapped, making reliable identification and quantification difficult. We have developed new
approaches to metabolomics using 13C detection by NMR, both at natural abundance and with isotopic
enrichment, to exploit the advantages of reduced peak overlap due to large spectral dispersion of 13C and
more robust database matching of chemical shifts to metabolites. The primary limitation of 13C-based NMR
metabolomics is sensitivity. We propose to develop a 5-mm 13C-optimized 800 MHz NMR probe made from
high-temperature superconductors (HTS) that will improve the sensitivity for metabolomics samples by at least
a factor of 3 beyond what is currently available. This sensitivity increase will reduce measurement times by at
least a factor of 9x or it will allow us to detect metabolites at 3-fold lower concentrations. These improvements
will be coupled with new acquisition methods using 2 NMR receivers and will be implemented on a new 800
MHz NMR spectrometer for enhanced sensitivity and throughput. Based on the target value for 13C signal-to-
noise of 9000:1 for the ASTM standard, we expect to be able to fully quantify and identify up to around 130
metabolites in a biofluid like human serum in about 2 hours. We are also developing methods to fractionate
and concentrate samples using HPLC and solid phase extraction (SPE), and this technology will allow us to
also measure mass spectrometry data on the same samples. We should be able to characterize over 300
metabolites with a 5x SPE concentration, or 450 metabolites with a 10x SPE. This project will greatly improve
the reproducibility, reliability, and biological information content of metabolomics. We will disseminate the
technology through commercialization or by making the drawings available to interested investigators.
Aim 1) Develop an 18.8 T 5-mm 13C-optimized HTS probe that will be installed on a Bruker Avance III HD
NMR spectrometer in the Complex Carbohydrate Research Center (CCRC) at the University of Georgia.
Aim 2) Develop new metabolomics applications using 2 receivers with quantitative 13C 1D and
simultaneous 1H 2D NMR experiments. LC-SPE will allow concentration and coupling with MS.
项目概要
代谢物对遗传和环境因素敏感,因此是疾病的良好指标
或表型。代谢组学的总体目标是测量与某个物质相关的所有代谢物。
具体疾病、治疗、基因型等。与其他组学相结合,代谢组学正在成为
在系统生物学研究、精准医学、食品和农业以及细胞研究中不可或缺
药品。代谢组学的主要困难是可靠且可重复的鉴定和
代谢物的定量。 NMR 和 LC-MS 等分析技术可以提供数百到数十种
来自代谢组学样本的数千个峰,但可以有效地量化这些峰并充满信心
将它们分配给真正的代谢物仍然是一个重大挑战。 NMR 的标准方法
代谢组学就是检测1H,因为它既丰富又敏感。 1H NMR 的问题在于
峰经常重叠,使得可靠的识别和定量变得困难。我们开发了新的
使用 NMR 检测 13C 进行代谢组学的方法,包括天然丰度和同位素
富集,利用由于 13C 和 13C 的大光谱色散而减少峰重叠的优点
化学位移与代谢物的更强大的数据库匹配。 13C NMR 的主要局限性
代谢组学是敏感性。我们建议开发一种 5 毫米 13C 优化 800 MHz NMR 探头,由
高温超导体(HTS)将至少将代谢组学样品的灵敏度提高
比当前可用的容量高出 3 倍。灵敏度的提高将减少测量时间
至少 9 倍,否则我们将能够检测浓度低 3 倍的代谢物。这些改进
将与使用 2 个 NMR 接收器的新采集方法相结合,并将在新的 800 上实施
MHz NMR 波谱仪可提高灵敏度和通量。基于 13C 信号到目标值
对于 ASTM 标准 9000:1 的噪声,我们预计能够完全量化和识别高达约 130
约 2 小时内即可在生物流体(如人血清)中产生代谢物。我们还在开发分馏方法
并使用 HPLC 和固相萃取 (SPE) 浓缩样品,这项技术将使我们能够
还测量相同样品的质谱数据。我们应该能够描述 300 多个
5 倍 SPE 浓度的代谢物,或 10 倍 SPE 浓度的 450 种代谢物。该项目将大大改善
代谢组学的再现性、可靠性和生物信息内容。我们将传播
通过商业化或向感兴趣的研究人员提供图纸来实现技术。
目标 1) 开发将安装在 Bruker Avance III HD 上的 18.8 T 5-mm 13C 优化 HTS 探头
佐治亚大学复杂碳水化合物研究中心 (CCRC) 的核磁共振波谱仪。
目标 2) 使用 2 个具有定量 13C 1D 和
同时进行 1H 2D NMR 实验。 LC-SPE 将允许浓缩并与 MS 耦合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARTHUR S EDISON其他文献
ARTHUR S EDISON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARTHUR S EDISON', 18)}}的其他基金
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
10180966 - 财政年份:2018
- 资助金额:
$ 32.84万 - 项目类别:
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
10173229 - 财政年份:2018
- 资助金额:
$ 32.84万 - 项目类别:
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
10254709 - 财政年份:2018
- 资助金额:
$ 32.84万 - 项目类别:
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
9767153 - 财政年份:2018
- 资助金额:
$ 32.84万 - 项目类别:
Genetics and quantum chemistry as tools for unknown metabolite identification
遗传学和量子化学作为未知代谢物鉴定的工具
- 批准号:
10012972 - 财政年份:2018
- 资助金额:
$ 32.84万 - 项目类别:
Portal for Open Computational Metabolomics Tools - Yr 4 U2C Supplement
开放计算代谢组学工具门户 - 第四年 U2C 补充材料
- 批准号:
10397265 - 财政年份:2018
- 资助金额:
$ 32.84万 - 项目类别:
Southeast Resource Center for Integrated Metabolomics (SECIM)
东南综合代谢组学资源中心 (SECIM)
- 批准号:
8732635 - 财政年份:2013
- 资助金额:
$ 32.84万 - 项目类别:
相似国自然基金
青藏高原不同区域冰川中微生物类脂物GDGTs的分布特征及其气候环境意义
- 批准号:42371155
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
南海周边生物质燃烧与区域气候及社会经济相互作用研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
内蒙古高原生态系统生物源挥发性有机物排放量对区域环境臭氧浓度影响
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
区域稻田镉生物有效性差异关键机制与定量预测
- 批准号:42277385
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于物质代谢的区域生物天然气供应链系统集成方法及资源环境效应研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Synthesis and quantitation of microcystins and anabaenopeptins in the Great Lakes region to establish human exposure risks via ingestion and inhalation
五大湖地区微囊藻毒素和鱼腥肽的合成和定量,以确定人类通过摄入和吸入接触的风险
- 批准号:
10660161 - 财政年份:2023
- 资助金额:
$ 32.84万 - 项目类别:
Male pesticide exposure, reproductive health and epigenetics
男性农药接触、生殖健康和表观遗传学
- 批准号:
10733537 - 财政年份:2023
- 资助金额:
$ 32.84万 - 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
- 批准号:
10757140 - 财政年份:2023
- 资助金额:
$ 32.84万 - 项目类别:
Enhancing The Value of Pigs for Agriculture and Biomedical Applications By Using Novel Genome Editing Strategies
通过使用新型基因组编辑策略提高猪在农业和生物医学应用中的价值
- 批准号:
10755034 - 财政年份:2023
- 资助金额:
$ 32.84万 - 项目类别:
Improving Health Outcomes Through Systems and Policy changes in Maine
通过缅因州的系统和政策变化改善健康成果
- 批准号:
10781461 - 财政年份:2023
- 资助金额:
$ 32.84万 - 项目类别: