Harnessing Single Cell Technology to Define Self-Renewal in Normal and Malignant Stem Cells
利用单细胞技术定义正常和恶性干细胞的自我更新
基本信息
- 批准号:9350788
- 负责人:
- 金额:$ 229.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-22 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Lymphocytic LeukemiaAutomobile DrivingBiologyCancer BiologyCancer ModelCancer RelapseCell surfaceCellsClinicalDataDiseaseDrug DesignFrequenciesGene Expression ProfileGenomicsGoalsHematopoietic stem cellsHumanImpairmentLabelLeukemic CellMaintenanceMalignant NeoplasmsModelingNormal tissue morphologyOrganPatientsPharmaceutical PreparationsPopulationPreclinical Drug EvaluationRelapseResearch PersonnelRoleSamplingStem cellsTechnologyTissuesTranslatingTransplantationZebrafishbasebiomarker panelcancer stem cellcell typechemotherapyin vivoleukemiamouse modelneoplastic celloutcome forecastpatient subsetspreventself renewing cellself-renewalsingle cell sequencingsingle cell technologystem cell nichesuccesstranscriptome sequencingtumortumor progression
项目摘要
!
Project Summary
A major clinical issue in most cancers is relapse. Patients often respond very well to
chemotherapy, and can go years without any sign of disease, but a subset of patients will invariably re-
develop their cancer with a poor final prognosis. Relapse occurs because our current chemotherapies
are unable to reliably and completely eliminate tumor propagating cells, also known as cancer stem cells.
These cells are unique among the tumor cell population in that they can self-renew, meaning that they
can replenish a tumor cell population indefinitely, similar to the role of the normal tissue stem cells in
tissue and organ maintenance. Preventing self-renewal in tumor propagating cells would cause them to
terminally differentiate, thereby blocking their ability to form relapse. Unfortunately, self-renewal of tumor
propagating cells is not well understood, precluding rational drug design. A major issue in regards to
studying these cells is their rarity; they often comprise 1 in every 105-107 cells within the total tumor cell
population in human cancers and mouse models, and culture ex vivo alters their self-renewal capability.
Researchers necessarily rely on FACS enrichment based on certain cell surface markers, but this biases
towards the cells expressing the markers and excludes some subsets of self-renewing cells.
The goal of this project is to have a major impact in the biomedical field by defining self-renewal
in tumor propagating cells in a completely unbiased manner. We will use leukemia propagating cells as a
model and determine how these cells differ from normal hematopoeitic stem cells, which can also self-
renew, and how are they unique from other leukemic cells that cannot self-renew. Based on these data,
we will find ways to detect leukemia propagating cells in patients, and identify drugs that can inhibit their
self-renewal ability. Initially, we will use a panel of high self-renewing acute lymphoblastic leukemias and
normal hematopoietic stem cells isolated from zebrafish models, which will allow us to use single cell
RNA sequencing to identify the unique gene expression profile of self-renewing leukemia propagating
cells without the need for FACS enrichment. We will translate our findings to human cells to build a
biomarker panel that can detect the frequency of self-renewing cells in patient samples, and tell us
whether chemotherapy has successfully eliminated them. We will also characterize the stem cell niche in
leukemias with high and low self-renewal rates, to identify how the niche is regulating self-renewal rate.
Finally, we will use transplantation approaches in zebrafish, as well as new zebrafish models in which the
leukemia propagating cells are fluorescently labeled, for high-throughput, in vivo drug screens to identify
compounds that impair self-renewal. In total, this project will provide an unbiased genomic and functional
analysis of tumor propagating cells, allowing us to answer fundamental questions about the biology of
this important tumor cell type.
!
项目概要
大多数癌症的一个主要临床问题是复发。患者通常反应良好
化疗,可能会持续数年而没有任何疾病迹象,但一部分患者总是会重新接受治疗。
患上癌症,最终预后较差。复发是因为我们目前的化疗
无法可靠且完全消除肿瘤增殖细胞,也称为癌症干细胞。
这些细胞在肿瘤细胞群中是独一无二的,因为它们可以自我更新,这意味着它们
可以无限地补充肿瘤细胞群,类似于正常组织干细胞的作用
组织和器官的维护。阻止肿瘤增殖细胞的自我更新会导致它们
终末分化,从而阻止它们形成复发的能力。不幸的是,肿瘤具有自我更新能力
细胞增殖尚不清楚,妨碍了合理的药物设计。一个主要问题是关于
研究这些细胞是非常罕见的;它们通常占肿瘤细胞总数中每 105-107 个细胞中就有 1 个
人类癌症和小鼠模型中的群体,离体培养改变了它们的自我更新能力。
研究人员必然依赖基于某些细胞表面标记物的 FACS 富集,但这会产生偏差
朝向表达标记的细胞并排除一些自我更新细胞的子集。
该项目的目标是通过定义自我更新在生物医学领域产生重大影响
以完全公正的方式在肿瘤增殖细胞中。我们将使用白血病增殖细胞作为
模型并确定这些细胞与正常造血干细胞有何不同,正常造血干细胞也可以自我
它们与其他不能自我更新的白血病细胞有何独特之处。根据这些数据,
我们将找到检测患者体内白血病增殖细胞的方法,并找到可以抑制其增殖的药物
自我更新能力。最初,我们将使用一组高度自我更新的急性淋巴细胞白血病和
从斑马鱼模型中分离出的正常造血干细胞,这将使我们能够使用单细胞
RNA测序鉴定自我更新白血病传播的独特基因表达谱
细胞无需 FACS 富集。我们将把我们的发现转化为人类细胞,以构建一个
生物标记物组合可以检测患者样本中自我更新细胞的频率,并告诉我们
化疗是否成功消除了它们。我们还将描述干细胞生态位的特征
具有高和低自我更新率的白血病,以确定生态位如何调节自我更新率。
最后,我们将在斑马鱼中使用移植方法,以及新的斑马鱼模型,其中
白血病增殖细胞被荧光标记,用于高通量体内药物筛选以识别
损害自我更新的化合物。总的来说,该项目将提供公正的基因组和功能
分析肿瘤增殖细胞,使我们能够回答有关肿瘤生物学的基本问题
这种重要的肿瘤细胞类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica S. Blackburn其他文献
Nanopore sequencing methods detect cell-free DNA associated with MRD and CNS infiltration in pediatric Acute Lymphoblastic Leukemia
纳米孔测序方法检测与儿科急性淋巴细胞白血病 MRD 和 CNS 浸润相关的游离 DNA
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Shilpa Sampathi;Yelena Chernyavskaya;Meghan G. Haney;L. H. Moore;Isabel A. Snyder;Anna H. Cox;Brittany L. Fuller;T. Taylor;Thomas C. Badgett;Jessica S. Blackburn - 通讯作者:
Jessica S. Blackburn
A monoadduct generating Ru(II) complex induces ribosome biogenesis stress and is a molecular mimic of phenanthriplatin
- DOI:
10.1039/d2cb00247g - 发表时间:
2023-02 - 期刊:
- 影响因子:4.1
- 作者:
Richard J. Mitchell;Sarah M. Kriger;Alexander D. Fenton;Dmytro Havrylyuk;Ankit Pandeya;Yang Sun;Tami Smith;Jason E. DeRouchey;Jason M. Unrine;Viral Oza;Jessica S. Blackburn;Yinan Wei;David K. Heidary;Edith C. Glazer - 通讯作者:
Edith C. Glazer
Wild‐type versus mutant MMP‐8 in melanoma: ‘When you come to a fork in the road, take it’ *
黑色素瘤中野生型与突变型 MMP-8:“当你来到岔路口时,抓住它”*
- DOI:
10.1111/j.1755-148x.2009.00573.x - 发表时间:
2009-06-01 - 期刊:
- 影响因子:4.3
- 作者:
Jessica S. Blackburn;C. Brinckerhoff - 通讯作者:
C. Brinckerhoff
In vivo imaging defines vascular interplay in the development of lymphocytic leukemia in zebrafish models
体内成像定义了斑马鱼模型中淋巴细胞白血病发展中血管的相互作用
- DOI:
10.1101/806562 - 发表时间:
2019-10-16 - 期刊:
- 影响因子:0
- 作者:
S. Revskoy;Margaret E. Blair;Shaw M. Powell;E. Hausman;Jessica S. Blackburn - 通讯作者:
Jessica S. Blackburn
Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia
无细胞 DNA 中克隆 IGH 重排的纳米孔测序作为急性淋巴细胞白血病的生物标志物
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Shilpa Sampathi;Yelena Chernyavskaya;Meghan G. Haney;L. H. Moore;Isabel A. Snyder;Anna H. Cox;Brittany L. Fuller;T. Taylor;D. Yan;Thomas C. Badgett;Jessica S. Blackburn - 通讯作者:
Jessica S. Blackburn
Jessica S. Blackburn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica S. Blackburn', 18)}}的其他基金
The Phosphatase PRL3 as a MYC Target and Pro-Survival Oncogene in Acute Lymphoblastic Leukemia
磷酸酶 PRL3 作为急性淋巴细胞白血病的 MYC 靶点和促生存癌基因
- 批准号:
10527104 - 财政年份:2023
- 资助金额:
$ 229.5万 - 项目类别:
The phosphatase PRL3 as a MYC target and pro-survival oncogene in Acute Lymphoblastic Leukemia
磷酸酶 PRL3 作为急性淋巴细胞白血病的 MYC 靶点和促生存癌基因
- 批准号:
9904131 - 财政年份:2018
- 资助金额:
$ 229.5万 - 项目类别:
The phosphatase PRL3 as a MYC target and pro-survival oncogene in Acute Lymphoblastic Leukemia
磷酸酶 PRL3 作为急性淋巴细胞白血病的 MYC 靶点和促生存癌基因
- 批准号:
10376861 - 财政年份:2018
- 资助金额:
$ 229.5万 - 项目类别:
The Role of Protein Tyrosine Phosphate PRL3 in Leukemia Development
蛋白酪氨酸磷酸 PRL3 在白血病发展中的作用
- 批准号:
9193624 - 财政年份:2015
- 资助金额:
$ 229.5万 - 项目类别:
The role of the protein tyrosine phosphatase PRL3 in leukemia development
蛋白酪氨酸磷酸酶 PRL3 在白血病发展中的作用
- 批准号:
8792374 - 财政年份:2014
- 资助金额:
$ 229.5万 - 项目类别:
The role of the protein tyrosine phosphatase PRL3 in leukemia development
蛋白酪氨酸磷酸酶 PRL3 在白血病发展中的作用
- 批准号:
8618454 - 财政年份:2014
- 资助金额:
$ 229.5万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Biology of terminal R-loops in splicing factor mutant cancers
剪接因子突变癌症中末端 R 环的生物学
- 批准号:
10652900 - 财政年份:2023
- 资助金额:
$ 229.5万 - 项目类别:
Elucidating Critical Dependencies Underlying Therapeutic Evasion in Philadelphia Chromosome-like Acute Lymphoblastic Leukemia
阐明费城染色体样急性淋巴细胞白血病治疗逃避背后的关键依赖性
- 批准号:
10507298 - 财政年份:2022
- 资助金额:
$ 229.5万 - 项目类别:
Remodeling of 3D chromatin in B cell acute leukemia and its impact on clinical outcome
B细胞急性白血病3D染色质重塑及其对临床结果的影响
- 批准号:
10184002 - 财政年份:2021
- 资助金额:
$ 229.5万 - 项目类别:
Remodeling of 3D chromatin in B cell acute leukemia and its impact on clinical outcome
B细胞急性白血病3D染色质重塑及其对临床结果的影响
- 批准号:
10631888 - 财政年份:2021
- 资助金额:
$ 229.5万 - 项目类别:
Clonal Therapy for Pediatric T-cell Acute Lymphoblastic Leukemia
小儿 T 细胞急性淋巴细胞白血病的克隆疗法
- 批准号:
10304780 - 财政年份:2021
- 资助金额:
$ 229.5万 - 项目类别: