Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
基本信息
- 批准号:9116910
- 负责人:
- 金额:$ 45.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAllelesBayesian MethodBiological AssayBiologyCRISPR/Cas technologyCatalogingCatalogsCategoriesCell LineCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexComputing MethodologiesDataData SetDatabasesDevelopmentDiseaseEpigenetic ProcessFamilyFounder GenerationFrequenciesGene ExpressionGene Expression RegulationGeneticGenetic VariationGenomeGenome engineeringGenomic SegmentGenomicsGenotype-Tissue Expression ProjectGoalsHealthHuman GeneticsHuman GenomeIndividualInheritedLinkLinkage DisequilibriumMachine LearningMapsMeasuresMethodsModelingMolecularMutationNucleotidesOpen Reading FramesPathogenesisPhenotypePlayPopulationPropertyRNA SplicingResearchResolutionResourcesRoleSamplingSardiniaSignal TransductionStatistical ModelsSystemTechniquesTestingTranscriptUntranslated RNAUpdateValidationVariantWidespread Diseasebasecohortcomputerized toolsdata modelingdensitydisease phenotypedisorder riskfunctional genomicsgenetic linkage analysisgenetic variantgenome annotationgenome editinggenome sequencinggenomic datahuman datahuman diseasehuman genome sequencingimprovedinnovationinsertion/deletion mutationlearning strategymolecular phenotypenovelprediction algorithmtraittranscriptometranscriptome sequencingtranscriptomicswhole genome
项目摘要
DESCRIPTION (provided by applicant): In order to characterize the molecular and cellular causes of human disease, it will be essential to unravel the functional impact of genetic variation. However, we are currently unable to predict the impact of the majority genetic variants that lie in non-coding regions of the genome, where indeed most complex disease-associated variants are found. Additionally, recent evidence suggests that a significant fraction of the non-coding genome is likely to be functional, often playing a role in gene regulation. Therefore, our limited understanding of non- coding variation is a critical hurdle to characterizing the genetic basis of disease. The goal of this project is to develop methods for interpreting non-coding genetic variation: to provide a robust and extensible Bayesian method for predicting causal variants from full genomes, to identify and validate a large set of functional non- coding variants using CRISPR technology, and to predict disease-relevant traits likely to be affected by each variant. Our project will leverage a unique cohort from a founder population in Sardinia, with genome sequence and/or transcriptome data available from 3000 individuals, along with extensive phenotyping for hundreds of traits. We will combine advanced statistical modeling with experimental validation based on genome engineering to identify causal non-coding variants affecting biomedical traits in the cohort, along with predicting functional mechanisms through which these variants ultimately perturb the cell. In Aim 1, we develop computational methods for predicting causal non-coding variation from full genomes, incorporating informative genomic features including epigenetic data, sequence motifs, and conservation information into a Bayesian approach jointly modeling multiple transcriptomic signals. We will optimize and apply these methods on genome and transcriptome data available for the Sardinia cohort to identify a large set of variants predicted to causally affect gene expression. Based on these predictions, in Aim 2, we connect putative causal variants with the diverse set of disease-relevant traits measured in the cohort, using network inference to capture the cascade from genetic variation to gene expression to disease. We will develop methods to integrate across variants, using the models in Aim 1, to identify the common causal mechanisms related to each trait. In Aim 3, we validate the causal impact of non-coding variants predicted to affect high-level traits. We will us genome editing through CRISPR to introduce individual genetic variants into cell lines and use qPCR to validate the predicted effects on gene expression. Finally, a major goal throughout this proposal will be to provide the research community with convenient computational tools for the prediction of causal non-coding variants from individual genomes, updated on an ongoing basis to integrate the most recent genomic annotations and public data in order to provide the best possible accuracy in predicting causal variants and the traits they are likely to affect. Our projet will greatly advance our understanding of non-coding genetic variation, the specific mechanisms affected by causal variants, and the downstream consequences to the cell and individual health.
描述(由申请人提供):为了表征人类疾病的分子和细胞原因,有必要阐明遗传变异的功能影响。然而,我们目前无法预测位于基因组非编码区域的大多数遗传变异的影响,而大多数复杂的疾病相关变异确实存在于该区域。此外,最近的证据表明,非编码基因组的很大一部分可能具有功能,通常在基因调控中发挥作用。因此,我们对非编码变异的有限理解是表征疾病遗传基础的关键障碍。该项目的目标是开发解释非编码遗传变异的方法:提供稳健且可扩展的贝叶斯方法来预测全基因组的因果变异,使用 CRISPR 技术识别和验证大量功能性非编码变异,并预测可能受每种变异影响的疾病相关性状。我们的项目将利用来自撒丁岛创始群体的独特队列,以及来自 3000 名个体的基因组序列和/或转录组数据,以及数百个性状的广泛表型分析。我们将先进的统计模型与基于基因组工程的实验验证相结合,以确定影响队列中生物医学特征的因果非编码变异,并预测这些变异最终扰乱细胞的功能机制。在目标 1 中,我们开发了用于预测全基因组因果非编码变异的计算方法,将包括表观遗传数据、序列基序和保守信息在内的信息基因组特征纳入贝叶斯方法,联合建模多个转录组信号。我们将优化这些方法并将其应用于撒丁岛队列可用的基因组和转录组数据,以识别大量预测会因果影响基因表达的变异。基于这些预测,在目标 2 中,我们将假定的因果变异与队列中测量的各种疾病相关性状联系起来,使用网络推理捕获从遗传变异到基因表达到疾病的级联。我们将使用目标 1 中的模型开发跨变体整合的方法,以确定与每个性状相关的常见因果机制。在目标 3 中,我们验证了预测影响高级性状的非编码变异的因果影响。我们将通过 CRISPR 进行基因组编辑,将个体遗传变异引入细胞系,并使用 qPCR 验证对基因表达的预测影响。最后,该提案的一个主要目标是为研究界提供方便的计算工具,用于预测个体基因组的因果非编码变异,并不断更新以整合最新的基因组注释和公共数据,以便在预测因果变异及其可能影响的特征方面提供尽可能高的准确性。我们的项目将极大地增进我们对非编码遗传变异、因果变异影响的具体机制以及对细胞和个体健康的下游影响的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Montgomery其他文献
Stephen Montgomery的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Montgomery', 18)}}的其他基金
Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
- 批准号:
10347286 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
- 批准号:
9917286 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
- 批准号:
10574498 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Stanford/Salk MoTrPAC Site for Genomes, Epigenomes and Transcriptomes
斯坦福/索尔克 MoTrPAC 基因组、表观基因组和转录组网站
- 批准号:
10318103 - 财政年份:2016
- 资助金额:
$ 45.43万 - 项目类别:
Stanford/Salk MoTrPAC Site for Genomes, Epigenomes and Transcriptomes
斯坦福/索尔克 MoTrPAC 基因组、表观基因组和转录组网站
- 批准号:
9518558 - 财政年份:2016
- 资助金额:
$ 45.43万 - 项目类别:
Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
- 批准号:
9306895 - 财政年份:2015
- 资助金额:
$ 45.43万 - 项目类别:
Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
- 批准号:
8792751 - 财政年份:2015
- 资助金额:
$ 45.43万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别: