Transforming Analytical Learning in the Era of Big Data

大数据时代的分析学习变革

基本信息

  • 批准号:
    9149238
  • 负责人:
  • 金额:
    $ 16.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-30 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): In this dawning era of `Big Data' it is vital to recruit and train the next generation of biomedical data scientists in `Big Data'. The collection of `Big Data' in the biomedical sciences is growing rapidly and has the potential to solve many of today's pressing medical needs including personalized medicine, eradication of disease, and curing cancer. Realizing the benefits of Big Data will require a new generation of leaders in (bio) statistical and computational methods who will be able to develop the approaches and tools necessary to unlock the information contained in large heterogeneous datasets. There is a great need for scientists trained in this specialized, highly heterogeneous, and interdisciplinary new field. Thus, the recruitment of talented undergraduates in science, technology, engineering and mathematics (STEM) programs is vital to our ability to tap into the potential that `Big Data' offer and the challenges that it presents. The University of Michigan Undergraduate Summer Institute: Transforming Analytical Learning in the Era of Big Data will draw from the expertise and experience of faculty from four different departments within four different schools at the University of Michigan: Biostatistics in the School of Public Health, Computer Science in the School of Engineering, Statistics in the College of Literature, Sciences and the Arts, and Information Science in the School of Information. The faculty instructors and mentors have backgrounds in Statistics, Computer Science, Information Science and Biological Sciences. They have active research programs in a broad spectrum of methodological areas including data mining, natural language processing, statistical and machine learning, large-scale optimization, matrix computation, medical computing, health informatics, high-dimensional statistics, distributed computing, missing data, causal inference, data management and integration, signal processing and imaging. The diseases and conditions they study include obesity, cancer, diabetes, cardiovascular disease, neurological disease, kidney disease, injury, macular degeneration and Alzheimer's disease. The areas of biology include neuroscience, genetics, genomics, metabolomics, epigenetics and socio-behavioral science. Undergraduate trainees selected will have strong quantitative skills and a background in STEM. The summer institute will consist of a combination of coursework, to raise the skills and interests of the participants to a sufficient level to consider pursuing graduate studies in `Big Data' science, along with an in depth mentoring component that will allow the participants to research a specific topic/project utilizing `Big Data'. We have witnessed tremendous enthusiasm and response for our pilot offering in 2015 with 153 applications for 20 positions and a yield rate of 80% from the offers we extended. We plan to build on the success of this initial offering in the next three year funding cycle of this grant (2016-2018). The overarching goal of our summer institute in big data is to recruit and train the next generation of big data scientists using a no-traditional, action-based learning paradigm. This six week long summer institute will recruit a group of approximately 30 undergraduates nationally and expose them to diverse techniques, skills and problems in the field of Big Data. They will be taught and mentored by a team of interdisciplinary faculty, reflecting the shared intellectual landscape needed for Big Data research. At the conclusion of the program there will be a concluding capstone symposium showcasing the research of the students via poster and oral presentation. There will be lectures by UM researchers, outside guests and a professional development workshop to prepare the students for graduate school. The resources developed for the summer institute, including lectures, assignments, projects, template codes and datasets will be freely available through a wiki page so that this format can be replicated anywhere in the world. This democratic dissemination plan will lead to access of teaching and training material for undergraduate students in this new field across the world.
 描述(由申请人提供):在这个“大数据”的黎明时代,招募和培训下一代“大数据”生物医学数据科学家至关重要生物医学科学中的“大数据”收集正在迅速增长。并有潜力解决当今许多紧迫的医疗需求,包括个性化医疗、根除疾病和治愈癌症。实现大数据的好处将需要新一代的(生物)领导者。 统计和计算方法将能够开发解锁大型异构数据集中包含的信息所需的方法和工具,因此非常需要在这个专业的、高度异构的和跨学科的新领域中接受过培训的科学家。科学、技术、工程和数学 (STEM) 项目中才华横溢的本科生对于我们挖掘“大数据”提供的潜力及其带来的挑战的能力至关重要。 密歇根大学本科生暑期学院:变革分析学习。大时代数据将来自密歇根大学四个不同学院的四个不同系的教师的专业知识和经验:公共卫生学院的生物统计学、工程学院的计算机科学、文学、科学学院的统计学和信息学院的教师和导师拥有统计学、计算机科学、信息科学和生物科学的背景,他们在数据挖掘、自然语言处理、统计和机器学习、大规模优化、矩阵他们研究的疾病和病症包括肥胖、癌症、糖尿病、心血管疾病、神经系统疾病。 、肾脏疾病、损伤、黄斑变性和阿尔茨海默病等生物学领域包括神经科学、遗传学、基因组学、代谢组学、表观遗传学和社会行为科学。所选的本科生将具有较强的定量技能和 STEM 背景。暑期学院将包括一系列课程,以将参与者的技能和兴趣提高到足够的水平,以考虑攻读“大数据”科学的研究生课程,以及深入的指导部分,使参与者能够进行研究利用“大数据”的特定主题/项目,我们对 2015 年的试点职位抱有极大的热情和反响,收到了 20 个职位的 153 份申请,我们计划在成功的基础上再接再厉。这个初始的我们的大数据暑期学院的总体目标是使用非传统的、基于行动的学习范式来招募和培训下一代大数据科学家。这个为期六周的暑期学院将在全国招募约 30 名本科生,让他们接触大数据领域的各种技术、技能和问题。他们将由跨学科教师团队教授和指导,体现共享知识。需要景观项目结束时,将举行总结性研讨会,通过海报和口头演示展示学生的研究成果。还将有密歇根大学研究人员、外部嘉宾的讲座和专业发展研讨会,为学生做好准备。为暑期学院开发的资源,包括讲座、作业、项目、模板代码和数据集将通过维基页面免费提供,以便这种格式可以在世界任何地方复制。这种民主传播计划将导致访问。的教学和为世界各地这一新领域的本科生提供培训材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy D Johnson其他文献

Neoadjuvant chemotherapy for high-grade serous ovarian cancer: radiologic-pathologic correlation of response assessment and predictors of progression.
高级别浆液性卵巢癌的新辅助化疗:反应评估和进展预测因素的放射学病理相关性。
  • DOI:
    10.1007/s00261-024-04215-w
  • 发表时间:
    2024-03-13
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Molly E. Rosel;Tianwen Ma;K. Shampain;Erica B. Stein;A. Wasnik;N. Curci;A. Sciallis;S. Uppal;Timothy D Johnson;K. Maturen
  • 通讯作者:
    K. Maturen
Evaluation of lung MDCT nodule annotation across radiologists and methods.
放射科医生和方法对肺 MDCT 结节注释的评估。
  • DOI:
    10.1016/j.acra.2006.07.012
  • 发表时间:
    2006-10-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    C. R. Meyer;Timothy D Johnson;Geoffrey Mclennan;Denise Aberle;Ella A. Kazerooni;H. MacMahon;B. Mul
  • 通讯作者:
    B. Mul

Timothy D Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy D Johnson', 18)}}的其他基金

Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
  • 批准号:
    10669008
  • 财政年份:
    2020
  • 资助金额:
    $ 16.05万
  • 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
  • 批准号:
    10451601
  • 财政年份:
    2020
  • 资助金额:
    $ 16.05万
  • 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
  • 批准号:
    10269912
  • 财政年份:
    2020
  • 资助金额:
    $ 16.05万
  • 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
  • 批准号:
    9044118
  • 财政年份:
    2015
  • 资助金额:
    $ 16.05万
  • 项目类别:
Administrative Supplement Request for Transforming Analytical Learning in the Era of Big Data
大数据时代变革分析学习的行政补充请求
  • 批准号:
    9243811
  • 财政年份:
    2015
  • 资助金额:
    $ 16.05万
  • 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
  • 批准号:
    8296951
  • 财政年份:
    2012
  • 资助金额:
    $ 16.05万
  • 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
  • 批准号:
    8446441
  • 财政年份:
    2012
  • 资助金额:
    $ 16.05万
  • 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
  • 批准号:
    8984924
  • 财政年份:
    2012
  • 资助金额:
    $ 16.05万
  • 项目类别:
Biostatistical Core
生物统计核心
  • 批准号:
    7490313
  • 财政年份:
    2008
  • 资助金额:
    $ 16.05万
  • 项目类别:
Biostatistics Core
生物统计学核心
  • 批准号:
    7214545
  • 财政年份:
    2006
  • 资助金额:
    $ 16.05万
  • 项目类别:

相似国自然基金

基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
  • 批准号:
    81903703
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
  • 批准号:
    81901296
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
  • 批准号:
    31900984
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 16.05万
  • 项目类别:
Investigating and targeting apolipoprotein E4 in Down syndrome-associated Alzheimer's disease
研究和靶向唐氏综合症相关阿尔茨海默病中的载脂蛋白 E4
  • 批准号:
    10658660
  • 财政年份:
    2023
  • 资助金额:
    $ 16.05万
  • 项目类别:
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
  • 批准号:
    10634934
  • 财政年份:
    2023
  • 资助金额:
    $ 16.05万
  • 项目类别:
Development of a novel, regenerative therapy to reverse synapse loss in Alzheimer's Disease
开发一种新颖的再生疗法来逆转阿尔茨海默氏病的突触损失
  • 批准号:
    10707700
  • 财政年份:
    2023
  • 资助金额:
    $ 16.05万
  • 项目类别:
A Phase 2b Clinical Study of the P38 Alpha Kinase Inhibitor Neflamapimod in Patients with Mild-to-Moderate Dementia with Lewy Bodies (DLB)
P38 α激酶抑制剂 Neflamapimod 治疗轻至中度路易体痴呆 (DLB) 患者的 2b 期临床研究
  • 批准号:
    10582488
  • 财政年份:
    2023
  • 资助金额:
    $ 16.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了