A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
基本信息
- 批准号:9321913
- 负责人:
- 金额:$ 56.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerActivities of Daily LivingAffectAlgorithmsAmericanBradykinesiaCalibrationCerebral PalsyClinicalComplementComplexComputer softwareDataDatabasesDevelopmentDevicesDiseaseDyskinetic syndromeDystoniaEffectivenessEnhancement TechnologyEssential TremorFreezingFutureGaitGait abnormalityGeneric DrugsGoalsGuidelinesHealth Care SectorHome environmentHybridsIndividualInvoluntary MovementsKineticsLaboratoriesLeadLeftLimb structureMeasurementMiniaturizationModalityMonitorMorphologic artifactsMotorMovementMovement DisordersMuscleNatureNeurologicPaperParkinson DiseasePatient Self-ReportPatientsPhasePopulationPostureProcessProductivityReportingResearchResearch PersonnelResolutionRestless Legs SyndromeRiskRotationScientistSeveritiesSurfaceSystemTabletsTechniquesTechnologyTestingTimeTrainingTremorUpdateWalkingWireless Technologybasebrain behaviorcommercializationdata acquisitiondata managementdesignhandheld mobile devicehuman subjectimprovedinstrumentmotor symptomnervous system disordernew technologynovelpatient monitoring deviceportabilityprospectiveprotocol developmentprototypepublic health relevancesensorsignal processingsoft tissuesystems researchtoolusability
项目摘要
DESCRIPTION (provided by applicant): The goal of this Phase II is to enhance the availability of advanced brain and behavior research tools [PA-14-250] by developing an automated sensor-based means of tracking the presence and severity of a broad spectrum of movement disorders during unscripted activities of daily living. The continuously updated and interpreted information from body-worn sensors will provide accurate, objective, and high resolution (1 s.) measurement of motor symptom severity of tremor, dyskinesia, bradykinesia, freezing and gait disorders in Parkinson's disease and postural/kinetic tremor in essential tremor. It will allow researchers to assess the oftentimes complex and dynamic nature of movement disorders, which is poorly captured by the current standard of self-reports and pencil-and-paper instruments. Advances in wearable sensor technology have facilitated such a solution, but there are currently no movement disorder recognition devices capable of interpreting sensor data from non- scripted activity in an effective manner for the more than 45 million people in the U.S. with movement disorders. Our approach is unique in that we are developing a generic Application Generator (AG) software platform containing signal processing modules that can be readily configured to provide automated recognition for different disorders without the need to prepare separate algorithms from scratch for each. Phase I established a proof of concept by developing a rudimentary AG platform that achieved automatic recognition of tremor, dyskinesia and freezing-of-gait in patients with Parkinson's disease (PD) from novel hybrid sensors that provided both muscle activity and movement data through surface electromyographic (sEMG) and accelerometer recordings. Phase II will continue the development to include a broader range of PD movement disorders, as well as other neurological conditions. Aim 1 will create an enhanced AG Platform by incorporating combined sEMG and inertial measurement unit (IMU) sensors to more completely describe involuntary movements and reduce the risk when tracking additional disorders. Human subject testing will provide a sensor database for testing IMU sensor accuracy and minimizing soft tissue artifacts. The Phase I recognition algorithms will be updated using the enhanced platform. Aim 2 will use the enhanced platform to develop new recognition applications that track bradykinesia and gait disorders in PD, and postural and kinetic tremors in patients with essential tremor. Our goal is to achieve error rates < 5% during unconstrained monitoring conditions with user- independent algorithms. Aim 3 will deliver a portable pre-commercial device with the requisite hardware, software, user interface, and report generator to effectively monitor PD, essential tremor, and sitting/standing/walking activity. The system will collect and process sEMG/IMU data using a tablet PC to enhance usability. Movement disorder experts and prospective end-users will guide the Phase II development and assist us with future commercialization plans for other neurological conditions such as cerebral palsy, dystonia, ALS, and restless leg syndrome. It will also form the basis for a patient-operable
device for clinical use.
描述(由申请人提供):第二阶段的目标是通过开发一种基于传感器的自动化方法来跟踪广谱的存在和严重性,从而增强先进的大脑和行为研究工具的可用性[PA-14-250]来自身体佩戴传感器的不断更新和解释的信息将提供准确、客观和高分辨率(1秒)的震颤、运动障碍、运动症状严重程度测量。帕金森病中的运动迟缓、僵直和步态障碍以及原发性震颤中的姿势/运动性震颤 它将使研究人员能够评估运动障碍的复杂性和动态性,而目前的自我报告和铅笔记录标准很难捕捉到这一点。可穿戴传感器技术的进步促进了这样的解决方案,但目前还没有能够为超过 4500 万人有效地解释来自非脚本活动的传感器数据的运动障碍识别设备。我们的方法是独一无二的,因为我们正在开发一个通用的应用程序生成器(AG)软件平台,其中包含可以轻松配置的信号处理模块,以提供对不同疾病的自动识别,而无需从头开始准备算法。第一阶段通过开发一个基本的 AG 平台建立了概念验证,该平台通过提供肌肉活动和运动数据的新型混合传感器实现了帕金森病 (PD) 患者震颤、运动障碍和步态冻结的自动识别。通过表面第二阶段将继续开发肌电图 (sEMG) 和加速度计记录,以涵盖更广泛的 PD 运动障碍以及其他神经系统疾病,目标 1 将通过结合 sEMG 和惯性测量单元 (IMU) 创建增强的 AG 平台。传感器可以更完整地描述不自主运动并降低跟踪其他疾病时的风险,这将提供一个传感器数据库,用于测试 IMU 传感器的准确性并最大限度地减少软组织伪影。第一阶段识别算法将使用增强的平台进行更新。目标 2 将使用增强的平台开发新的识别应用程序,用于跟踪 PD 中的运动迟缓和步态障碍,以及特发性震颤患者的姿势和运动性震颤。我们的目标是在独立于用户的无约束监测条件下实现错误率 < 5%。 Aim 3 将提供一款便携式预商用设备,配备必要的硬件、软件、用户界面和报告生成器,以有效监测 PD、特发性震颤和坐/站/行走活动。系统将使用平板电脑收集和处理 SEMG/IMU 数据,以增强可用性。运动障碍专家和潜在的最终用户将指导 II 期开发,并协助我们制定针对脑瘫、肌张力障碍、ALS 等其他神经系统疾病的未来商业化计划。和不安腿综合症也将构成患者可手术的基础。
供临床使用的设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianluca De Luca其他文献
Gianluca De Luca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianluca De Luca', 18)}}的其他基金
SpeechSense: An Interactive Sensor Platform for Speech Therapy
SpeechSense:用于言语治疗的交互式传感器平台
- 批准号:
10256832 - 财政年份:2022
- 资助金额:
$ 56.65万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
9046217 - 财政年份:2015
- 资助金额:
$ 56.65万 - 项目类别:
Subvocal Speech for Augmentative and Alternative Communication
用于增强性和替代性交流的默声语音
- 批准号:
9130174 - 财政年份:2015
- 资助金额:
$ 56.65万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8521782 - 财政年份:2013
- 资助金额:
$ 56.65万 - 项目类别:
A Software Platform for Sensor-based Movement Disorder Recognition
基于传感器的运动障碍识别软件平台
- 批准号:
8734495 - 财政年份:2013
- 资助金额:
$ 56.65万 - 项目类别:
A Wireless-Sensor System for Reliable Recordings during Vigorous Muscle Activitie
无线传感器系统可在剧烈肌肉活动期间进行可靠记录
- 批准号:
8392830 - 财政年份:2012
- 资助金额:
$ 56.65万 - 项目类别:
A Wireless Sensor System for Reliable Recordings During Exercise
用于运动期间可靠记录的无线传感器系统
- 批准号:
8978255 - 财政年份:2012
- 资助金额:
$ 56.65万 - 项目类别:
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Linking dementia pathology and alteration in brain activation to complex daily functional decline during the preclinical dementia stage
将痴呆病理学和大脑激活的改变与临床前痴呆阶段复杂的日常功能下降联系起来
- 批准号:
10662690 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
- 批准号:
10657828 - 财政年份:2023
- 资助金额:
$ 56.65万 - 项目类别:
SCH: Integrating AI and System Engineering for Glucose Regulation in Diabetes
SCH:整合人工智能和系统工程来调节糖尿病的血糖
- 批准号:
10706604 - 财政年份:2022
- 资助金额:
$ 56.65万 - 项目类别: