Harvesting specific plant metabolites from hairy root cultures using magnetized nanoparticles

使用磁化纳米颗粒从毛状根培养物中收获特定的植物代谢物

基本信息

  • 批准号:
    9343261
  • 负责人:
  • 金额:
    $ 53.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Abstract: Plant cell cultures are becoming a commercially valuable source of pharmaceuticals, particularly those that are too complex for economical chemical synthesis. For example Phyton Biotech, in Germany, has achieved great commercial success by generating taxoids for Paclitaxel production in sterile plant cell bioreactors. However, the efficiency of these systems is limited by the loss in viability of the slow-growing plant cells associated with conventional extraction procedures. The objective here is to develop a system that allows plant cells to be harvested repeatedly for high value pharmaceutical products without losing viability. Phase I demonstrated that nanoparticles can be functionalized to enter plant cells and bind specific bioactive flavonoid metabolites before being extruded, and these metabolites recovered, all without loss of plant cell viability. Phase II now aims to demonstrate that a similar, but more selective, approach can be used to harvest higher value pharmaceuticals from plant cells (i.e. proof of application). The most valuable types of metabolite currently produced from plants include isoflavones, alkaloids and monoclonal antibodies (the latter from transgenic plants). Phase II aims to show that each of these types of product can be harvested from plant cells by their selective binding to nanoparticles on which specific oligopeptides have been conjugated. Each product example is relevant to anti-cancer therapeutics. The first is the phytoestrogen, liquiritigenin, which is a selective agonist of the estrogen receptor (ER)beta that should reduce risk of breast cancer post-menopause. This flavanone will be harvested from overproducing mutant cultures of licorice root by selective binding to the ERbeta ligand-binding oligopeptide conjugated to nanoparticles. The second example is to nanoharvest the chemotherapeutic vinca alkaloids (currently extracted from intact plant material by Eli Lilly) from overproducing mutant cultures of Catharanthus roseus. These alkaloids will be harvested by affinity to nanoparticles bearing oligopeptides representing their binding sites on human tubulin. These two examples are natural metabolites, but the most commercially important application of this technology may be to harvest foreign polypeptides, i.e. “biologics”, such as antibodies, from transgenic plant cells. Here the example will be the harvesting from transgenic tobacco cell cultures of a monoclonal antibody (mAbH10) directed against tumor cells. Selective binding will be achieved using nanoparticles in which an oligopeptide mimicking the antibody-binding site on the antigen has been conjugated to the surface. In all of these examples the objective is to show that nanoparticles can repeatedly remove the desired commercial product without loss of plant cell viability. This will reduce “down time” and could also reduce “response time”, for example the urgent requirement for antibodies or vaccines in an outbreak of disease. In addition, separation of product by affinity to an oligopeptide binding site means that the harvested products will be simultaneously semi-purified. Phase II should demonstrate proof of application for the nanoparticle harvesting technology as applied to high value anti-cancer pharmaceuticals. The applicants will then move toward commercialization in partnership with identified pharmaceutical and biotechnology companies in the US and Europe (see Commercialization Plan).
摘要:植物细胞培养物正在成为具有商业价值的药物来源,特别是 那些对于经济的化学合成来说过于复杂的物质,例如德国的 Phyton Biotech 公司就拥有这种技术。 通过在无菌植物细胞中生成紫杉醇用于紫杉醇生产,取得了巨大的商业成功 然而,这些系统的效率受到生长缓慢的植物活力丧失的限制。 与传统提取程序相关的细胞本文的目标是开发一个系统 允许重复收获植物细胞以生产高价值的药品,而不会失去活力。 第一阶段证明纳米颗粒可以功能化进入植物细胞并结合特定的生物活性 挤压前的类黄酮代谢物,以及这些代谢物的回收,均不损失植物细胞 第二阶段现在的目标是证明可以使用类似但更具选择性的方法来收获。 来自植物细胞的更高价值的药物(即应用证明)最有价值的代谢物类型。 目前从植物中生产的物质包括异黄酮、生物碱和单克隆抗体(后者来自 第二阶段的目的是证明这些类型的产品都可以从植物细胞中收获。 通过它们选择性地结合特定寡肽的纳米颗粒。 例子与抗癌疗法有关。第一个是植物雌激素甘草素,它是一种选择性的激素。 雌激素受体 (ER)β 激动剂,可降低绝经后患乳腺癌的风险。 黄烷酮将从甘草根的过量生产突变体培养物中通过选择性结合来收获 第二个例子是纳米收获 ERbeta 配体结合寡肽。 化疗用长春花生物碱(目前由礼来公司从完整的植物材料中提取)来自过度生产 这些生物碱将通过与带有纳米颗粒的亲和力来收获。 代表其在人微管蛋白上的结合位点的寡肽这两个例子是天然代谢物, 但该技术最重要的商业应用可能是收获外源多肽,即 “生物制品”,例如来自转基因植物细胞的抗体。 针对肿瘤细胞的单克隆抗体(mAbH10)的转基因烟草细胞培养物。 结合将使用纳米颗粒来实现,其中寡肽模仿抗体结合位点 在所有这些例子中,目的是表明抗原已缀合至表面。 纳米颗粒可以反复去除所需的商业产品,而不损失植物细胞的活力。 将减少“停机时间”,也可以减少“响应时间”,例如紧急需求 疾病爆发时的抗体或疫苗此外,通过与某种物质的亲和力来分离产品。 寡肽结合位点意味着收获的产品将同时进行第二阶段的半纯化。 应证明纳米颗粒收获技术应用于高价值 然后,申请人将与合作伙伴进行抗癌药物的商业化。 确定了美国和欧洲的制药和生物技术公司(参见商业化计划)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOHN M. LITTLETON其他文献

JOHN M. LITTLETON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOHN M. LITTLETON', 18)}}的其他基金

Mimicking synuclein toxicity in plant cells to identify novel neuroprotective leads
模拟植物细胞中的突触核蛋白毒性以鉴定新型神经保护先导化合物
  • 批准号:
    10267035
  • 财政年份:
    2018
  • 资助金额:
    $ 53.03万
  • 项目类别:
Mimicking synuclein toxicity in plant cells to identify novel neuroprotective leads
模拟植物细胞中的突触核蛋白毒性以鉴定新型神经保护先导化合物
  • 批准号:
    10078986
  • 财政年份:
    2018
  • 资助金额:
    $ 53.03万
  • 项目类别:
Development of JR-220 (4-Chlorobenzylidenamino-guanidine hydrochloride) as a medication for alcohol dependence
开发 JR-220(4-氯苯亚基氨基胍盐酸盐)作为酒精依赖药物
  • 批准号:
    9397465
  • 财政年份:
    2017
  • 资助金额:
    $ 53.03万
  • 项目类别:
Development of JR-220 (4-Chlorobenzylidenamino-guanidine hydrochloride) as a medication for alcohol dependence
开发 JR-220(4-氯苯亚基氨基胍盐酸盐)作为酒精依赖药物
  • 批准号:
    10459072
  • 财政年份:
    2017
  • 资助金额:
    $ 53.03万
  • 项目类别:
Mutant transgenic plant cells as a novel source of drugs
突变转基因植物细胞作为新的药物来源
  • 批准号:
    9356446
  • 财政年份:
    2016
  • 资助金额:
    $ 53.03万
  • 项目类别:
Mutant transgenic plant cells as a novel source of drugs
突变转基因植物细胞作为新的药物来源
  • 批准号:
    9253077
  • 财政年份:
    2016
  • 资助金额:
    $ 53.03万
  • 项目类别:
Novel flavonoids as anti-inflammatory agents in alcoholism
新型黄酮类化合物作为酒精中毒的抗炎剂
  • 批准号:
    8251289
  • 财政年份:
    2014
  • 资助金额:
    $ 53.03万
  • 项目类别:
Harvesting specific plant metabolites from hairy root cultures using magnetized n
使用磁化n从毛状根培养物中收获特定的植物代谢物
  • 批准号:
    8712853
  • 财政年份:
    2014
  • 资助金额:
    $ 53.03万
  • 项目类别:
Alcohol, the vagus nerve and multi-organ inflammation
酒精、迷走神经和多器官炎症
  • 批准号:
    8064072
  • 财政年份:
    2011
  • 资助金额:
    $ 53.03万
  • 项目类别:
Alcohol, the vagus nerve and multi-organ inflammation
酒精、迷走神经和多器官炎症
  • 批准号:
    8334496
  • 财政年份:
    2011
  • 资助金额:
    $ 53.03万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
  • 批准号:
    22304062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 53.03万
  • 项目类别:
Mapping brain-wide opioid actions by profiling neuronal activities and in vivo cellular target engagement
通过分析神经元活动和体内细胞靶标参与来绘制全脑阿片类药物作用
  • 批准号:
    10775623
  • 财政年份:
    2023
  • 资助金额:
    $ 53.03万
  • 项目类别:
Partial and Controlled Depletion of SR Calcium by RyR Agonists Prevents Calcium-dependent Arrhythmias
RyR 激动剂部分且受控地消耗 SR 钙可预防钙依赖性心律失常
  • 批准号:
    10577630
  • 财政年份:
    2023
  • 资助金额:
    $ 53.03万
  • 项目类别:
Protease-activated-receptor-2 antagonists for treatment of migraine pain
蛋白酶激活受体 2 拮抗剂治疗偏头痛
  • 批准号:
    10602826
  • 财政年份:
    2023
  • 资助金额:
    $ 53.03万
  • 项目类别:
Chemical Tools to Target TREM2 in Alzheimer's Disease
靶向 TREM2 治疗阿尔茨海默病的化学工具
  • 批准号:
    10869791
  • 财政年份:
    2023
  • 资助金额:
    $ 53.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了