Novel and Robust Methods for Differential Protein Network Analysis of Proteomics Data in Schizophrenia Research
精神分裂症研究中蛋白质组数据差异蛋白质网络分析的新颖而稳健的方法
基本信息
- 批准号:9304868
- 负责人:
- 金额:$ 7.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAuditory areaAutopsyBiologicalBiological ModelsCommunitiesCustomDataData AnalysesData SourcesDependencyDetectionDevelopmentDiseaseFundingFutureGaussian modelGenesGoalsImageryJointsMass Spectrum AnalysisMeasuresMental disordersMethodologyMethodsModelingNormal tissue morphologyPathologyPathway AnalysisPatientsPeptidesPerformanceProceduresProteinsProteomicsReproducibilityResearchSample SizeSamplingSchizophreniaStatistical MethodsStructureSynapsesTestingUniversitiesValidationWorkbasebrain tissuecloud basedconditioningdesignexperimental studyimprovedmouse modelneuropsychiatric disordernoveltheoriestool
项目摘要
Abstract
Biological networks such as protein networks provide an integrated perspective on how proteins work together
and are becoming important tools to study neuropsychiatric disorders such as schizophrenia. Mass
spectrometry (MS) based proteomics are rapidly advancing and are now capable of quantifying proteins with
increased sensitivity and throughput, which provide critical data sources for protein networks and have been
emerging as important application in the study of psychiatric diseases. For example, in our recent study, the
synaptic protein co-expression network was found to be altered in the auditory cortex of schizophrenia patients.
Whereas a variety of network analysis methods have now been developed for microarray data, methodologies
customized to proteomic data are lagging far behind. In addition, these methods mainly focus on pairwise
marginal correlations while ignoring the joint effects from other genes when constructing the network, failing to
distinguish causal interactions from correlations via intermediate genes. Moreover, most existing methods for
network testing are permutation based, from which the p-values could be invalid if the permutation-based null
distribution is inaccurate. The probabilistic graphical model based differential network inference is more
desirable as it infers conditional dependency by adjusting for the joint effects from all other proteins and
guarantees to be valid and powerful when the distributional assumptions are satisfied.
The objective of our proposed research is to develop, validate and apply novel and robust statistical methods
to construct, analyze and infer protein networks from two popular proteomic platforms, namely, the targeted-
MS and the unbiased differential-MS. The novel methodology will be immediately applied to the ongoing
schizophrenia projects at the University of Pittsburgh, to facilitate novel analyses to identify protein alterations
contributing to the disease pathology. First, we will develop novel network construction methodology based on
a partial-correlation-based approach, which is under the Gaussian Graphical Model (GGM) framework and
quantifies the correlation between two proteins after excluding the effects of other proteins, for protein network
construction. Then, we will develop a novel differential network inference procedure, based on the recent
development of GGM theory and associated inference, to formally test network differences. Finally, we will
thoroughly validate the proposed methods using both statistically simulated data and the real data from a
biological model with well characterized network interactions. Robustness of the networks will be assessed
using rigorously designed replicate experiments with samples from post-mortem brain tissues of normal
subjects. In summary, the novel methods and findings from this research will provide critical guidance for the
design, analysis and validation of ongoing and future network studies that utilize proteomics approaches in
psychiatric disorders, which will greatly improve the sensitivity and validity of the consequent scientific findings.
抽象的
蛋白质网络等生物网络提供了蛋白质如何协同工作的综合视角
并正在成为研究精神分裂症等神经精神疾病的重要工具。大量的
基于光谱 (MS) 的蛋白质组学正在迅速发展,现在能够用以下方法定量蛋白质:
提高的灵敏度和吞吐量,为蛋白质网络提供了关键的数据源,并已被
正在成为精神疾病研究中的重要应用。例如,在我们最近的研究中,
研究发现,精神分裂症患者的听觉皮层中的突触蛋白共表达网络发生了改变。
尽管现在已经针对微阵列数据开发了多种网络分析方法,但方法论
针对蛋白质组数据的定制远远落后。另外,这些方法主要关注pairwise
边际相关性,而在构建网络时忽略了其他基因的联合效应,未能
通过中间基因区分因果相互作用和相关性。此外,大多数现有方法
网络测试是基于排列的,如果基于排列的空值,则 p 值可能无效
分布不准确。基于概率图模型的差分网络推理更
理想的,因为它通过调整所有其他蛋白质的联合效应来推断条件依赖性
当满足分布假设时,保证是有效且有效的。
我们提出的研究的目标是开发、验证和应用新颖且稳健的统计方法
从两个流行的蛋白质组平台构建、分析和推断蛋白质网络,即靶向
MS 和无偏微分 MS。新方法将立即应用于正在进行的项目
匹兹堡大学的精神分裂症项目,旨在促进识别蛋白质改变的新分析
有助于疾病病理学。首先,我们将开发基于
基于偏相关的方法,在高斯图模型(GGM)框架下
对于蛋白质网络,在排除其他蛋白质的影响后量化两种蛋白质之间的相关性
建造。然后,我们将基于最近的研究开发一种新颖的差分网络推理程序
发展 GGM 理论和相关推理,以正式测试网络差异。最后,我们将
使用统计模拟数据和真实数据彻底验证所提出的方法
具有良好特征的网络相互作用的生物模型。将评估网络的稳健性
使用严格设计的重复实验,对正常人死后脑组织的样本进行研究
科目。总之,本研究的新颖方法和发现将为
设计、分析和验证正在进行的和未来的网络研究,这些研究利用蛋白质组学方法
精神疾病,这将大大提高后续科学发现的敏感性和有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Ding其他文献
Ying Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Ding', 18)}}的其他基金
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
- 批准号:
10453875 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别:
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
- 批准号:
10631139 - 财政年份:2022
- 资助金额:
$ 7.51万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 7.51万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 7.51万 - 项目类别:
Accelerating digital cognitive screening for Alzheimer's disease in the Primary Care Setting
加速初级保健机构中阿尔茨海默病的数字认知筛查
- 批准号:
10664618 - 财政年份:2023
- 资助金额:
$ 7.51万 - 项目类别:
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
- 批准号:
10831259 - 财政年份:2023
- 资助金额:
$ 7.51万 - 项目类别: