Systems Level Causal Discovery in Heterogeneous TOPMed Data
异构 TOPMed 数据中的系统级因果发现
基本信息
- 批准号:9310591
- 负责人:
- 金额:$ 60.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-18 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiological MarkersBiological ModelsBloodCause of DeathCharacteristicsChronic Obstructive Airway DiseaseClassificationClinicalClinical DataCloud ComputingCollaborationsCommunitiesComputational BiologyComputer softwareConsensusDataData CollectionData SetDevelopmentDiagnosticDiseaseDisease ProgressionDisease modelDisease susceptibilityFunctional ImagingFunctional disorderFundingFutureGenesGenetic DeterminismGenomic medicineGenomicsGenotypeGoalsGraphHealth Care CostsHeartHospitalsImageIndividualInternetLearningLiftingLinkMachine LearningMethodsModalityModelingMolecularMorphologyOutcomeOutcome AssessmentPathologyPatientsPeripheral Blood Mononuclear CellPhenotypePhysiologicalPrecision therapeuticsProceduresProcessPulmonologyRecording of previous eventsResearchResearch PersonnelRespiratory physiologyRiskRisk FactorsScienceStreamSubgroupSyndromeSystemTechnologyTestingThe Cancer Genome AtlasTissuesTrans-Omics for Precision MedicineUnited States National Institutes of HealthUniversitiesVariantVisitX-Ray Computed Tomographyanalytical methodbaseclinical imagingclinically relevantcloud basedcohortcomputer sciencecost effectivedata integrationdisabilitydisease phenotypedisorder subtypegraphical user interfacehigh throughput technologyinnovationlongitudinal datasetmedical schoolsmetabolomicsmortalitymultimodalitynew technologynoveloutcome forecastprecision genomic medicineprecision medicineprognosticrepositorysuccesstooltranscriptome sequencinguser-friendly
项目摘要
SYSTEMS LEVEL CAUSAL DISCOVERY IN HETEROGENEOUS TOPMED DATA
ABSTRACT
The advent of new technologies for collecting and analyzing multiple heterogeneous data streams from the
same individual makes possible the detailed phenotypic characterization of diseases and paves the way for the
development of individualized precision therapies. A major bottleneck in this process is the lack of robust,
efficient and truly integrative analytic methods for such multi-modal data. This proposal builds on the ongoing
efforts of our group in the area of causal learning in biomedicine. The objective of this application is to extend,
modify and tailor our causal probabilistic graphical models to data typically collected by TOPMed projects, such
as –omics data (SNPs, metabolomics, RNA-seq, etc), imaging, patients' history, and clinical data.
COPDGene® is one of the TOPMed projects and has generated datasets with those modalities for 10,000
patients with chronic obstructive pulmonary disease (COPD), the third leading cause of death and a major
cause of disability and health care costs in the US. The prevailing view is that COPD is a syndrome, consisting
of multiple diseases with different characteristics. There is currently no satisfactory method for COPD
subtyping or prediction of disease progression. In this project we will apply, test and validate our approaches
on COPDGene® and another large independent COPD cohort. The extension and application of our methods
to cross-sectional and longitudinal data will also allow us to investigate a number of important questions and
aspects related to COPD. Mechanistically, we will investigate how SNPs, genes and their networks are
causally linked to disease phenotypes. In pathology, we will identify conditional biomarkers, which will lead to
disease sub-classification and identification of causal components in each subtype. In pathophysiology, we will
identify features that are directly linked to lung function decline and outcome. We will make all our algorithms
and results available to the community through web and public cloud interfaces. The deliverables will be (1)
new probabilistic approaches for integration and analysis of multi-modal cross-sectional and longitudinal data,
including SNPs, blood biomarkers, CT scans and clinical data; (2) new cloud-based server to make these
approaches available to the research community; (3) results on the mechanism, pathology and
pathophysiology of COPD facilitation and progression. To guarantee the success of the project we have
assembled a team of experts in genomics, machine learning, cloud computing and COPD. This cross-
disciplinary team project will have a positive impact beyond the above deliverables, since the generality of our
approaches makes them applicable to any disease. We expect that during this U01 we will have the
opportunity to collaborate with other teams in the TOPMed consortium to help them investigate the causes of
their corresponding disease phenotypes. We do believe that data integration in a single probabilistic framework
will be in the heart of precision medicine strategies in the future, when massive high-throughput data collection
will become a routine diagnostic and prognostic procedure in all hospitals.
异构顶级数据中的系统级因果发现
抽象的
用于收集和分析多个异构数据流的新技术的出现
同一个人使得疾病的详细表型特征成为可能,并为研究铺平了道路。
这一过程中的一个主要瓶颈是缺乏稳健的、精准的治疗方法。
该提案建立在正在进行的多模态数据的基础上。
我们小组在生物医学因果学习领域的努力的目的是扩展,
根据 TOPMed 项目通常收集的数据修改和定制我们的因果概率图形模型,例如
作为组学数据(SNP、代谢组学、RNA-seq 等)、影像、患者病史和临床数据。
COPDGene® 是 TOPMed 项目之一,已使用这些模式生成了 10,000 例数据集
慢性阻塞性肺疾病 (COPD) 是导致患者死亡的第三大原因,
美国的残疾原因和医疗费用普遍认为慢性阻塞性肺病是一种综合症,包括
多种不同特点的疾病目前尚无令人满意的治疗方法。
在这个项目中,我们将应用、测试和验证我们的方法。
关于 COPDGene® 和另一个大型独立 COPD 队列我们方法的扩展和应用。
横截面和纵向数据也将使我们能够调查一些重要的问题和
从机制上讲,我们将研究 SNP、基因及其网络的作用。
在病理学中,我们将识别条件生物标志物,这将导致
在病理生理学中,我们将进行疾病的细分和每个亚型的病因成分的识别。
我们将确定与肺功能下降和结果直接相关的特征。
通过网络和公共云界面向社区提供的结果将是 (1)。
用于整合和分析多模式横截面和纵向数据的新概率方法,
(2) 新的基于云的服务器使这些
研究界可用的方法;(3)机制、病理学和
COPD 促进和进展的病理生理学 为了保证该项目的成功,我们进行了研究。
组建了一个由基因组学、机器学习、云计算和 COPD 领域的专家组成的团队。
纪律小组项目将产生超出上述可交付成果的积极影响,因为我们的普遍性
方法使它们适用于任何疾病,我们预计在本次 U01 期间我们将拥有
有机会与 TOPMed 联盟中的其他团队合作,帮助他们调查问题的原因
我们确实相信将数据整合到一个概率框架中。
当大量高通量数据收集时,将成为未来精准医学战略的核心
将成为所有医院的常规诊断和预后程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PANAGIOTIS V BENOS其他文献
PANAGIOTIS V BENOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10705838 - 财政年份:2022
- 资助金额:
$ 60.79万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10689580 - 财政年份:2022
- 资助金额:
$ 60.79万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
- 批准号:
10206417 - 财政年份:2021
- 资助金额:
$ 60.79万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10705824 - 财政年份:2021
- 资助金额:
$ 60.79万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10689574 - 财政年份:2021
- 资助金额:
$ 60.79万 - 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
- 批准号:
10188612 - 财政年份:2018
- 资助金额:
$ 60.79万 - 项目类别:
相似国自然基金
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
- 批准号:72271152
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
- 批准号:
10735164 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别: