Small molecules as antibiotic potentiating agents against multi-drug resistant Gram-negative infections
小分子作为抗生素增强剂对抗多重耐药革兰氏阴性菌感染
基本信息
- 批准号:8977618
- 负责人:
- 金额:$ 64.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcinetobacterAcinetobacter baumanniiAcuteAddressAdjuvant TherapyAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceBacteriaBacterial InfectionsBacterial InterferenceBindingCenters for Disease Control and Prevention (U.S.)Cessation of lifeChemosensitizationCombined AntibioticsCombined Modality TherapyContractsCrystallographyDataDefense MechanismsDevelopmentDisinfectionDrug FormulationsDrug KineticsDrug resistanceEvaluationFutureGoalsGram-Negative BacteriaGram-Negative Bacterial InfectionsGrantHealthHealth Care CostsHospitalsHumanInfectionInvestigational DrugsKlebsiella pneumonia bacteriumLeadLungMaximum Tolerated DoseMeropenemMetabolicMinimum Inhibitory Concentration measurementModelingMulti-Drug ResistanceMusOmpR proteinPerformancePharmacodynamicsPharmacologic SubstancePhasePlasma ProteinsPneumoniaPredispositionPrevalenceProceduresProgram DevelopmentPropertyProtein BindingPseudomonas aeruginosaResistanceRouteSafetyScienceSocietiesSolutionsStructureSystemTechnologyTherapeuticThigh structureUrinary tract infectionWorkWorld Health Organizationbasecombatdisorder preventiondrug candidatedrug resistant bacteriaeconomic impactexhausthealth economicsimprovedin vivonovelpathogenpre-clinicalprogramspublic health relevancescaffoldscale upsignal processingsmall molecule
项目摘要
DESCRIPTION (provided by applicant): Antibiotic resistance has been declared one of the three greatest threats to human health by the World Health Organization. Infections caused by multi-drug resistant (MDR) bacterial pathogens create substantial health and economic impacts on society due to the lack of effective therapeutic options created by the rapid acquisition of resistance and stagnant antibiotic development programs. This lack of treatment options is particularly relevant for MDR Gram-negative pathogens, such as Pseudomonas aeruginosa, Acinetobacter baumanii and Klebsiella pneumoniae, which have shown a great propensity to thwart antibiotic treatments and standard hospital disinfection procedures. Agile Sciences is developing a novel class of small molecules, based on a 2-aminoimidazole (2-AI) scaffold, that substantially increase the susceptibility of MDR bacteria to antibiotic therapies. As an adjuvant therapy to current antibiotics, the 2-AI molecules have the potential to provide a much improved treatment option for MDR Gram-negative bacterial infections. Phase I equivalent work has displayed the potential of 2-AI compounds as antibiotic potentiating agents against MDR Gram-negative bacterial pathogens. Our efforts have shown that: 1) two lead compounds, AGL- 503 and AGL-553, are able to lower the antibiotic MIC values against MDR Gram-negative bacteria; 2) an AGL-503-meropenem combination therapy has the ability to enhance survival and decrease bacterial burden (compared to meropenem alone) in a MDR P. aeruginosa acute lung infection model; 3) 2-AI compounds possess favorable safety and pharmaceutical profiles; and 4) 2-AI compounds act via a novel mechanism of action that retards antimicrobial resistance. Collectively, this data provides strong support for a continued development program to define the potential therapeutic utility of the 2-AI class of molecules as an antibiotic combination therapy for treating infections caused by MDR Gram-negative bacteria. In Phase II, we will focus development of the 2-AI class of molecules to address the substantial unmet need posed by MDR Gram-negative bacterial infections. First, in Aim 1, we will identify the optimal antibiotic combinations for the lead 2-AI compounds against P. aeruginosa, K. pneumoniae, and A. baumanii. The optimal combinations will be evaluated for pharmacodynamics using the mouse thigh infections mode. In Aim 2, the off-target effects of AGL-503 and AGL-553 will be evaluated through off-target panel screens and characterizations of target binding. The 2-AI-antibitoic combination with the most promising results in Aim 1 will be evaluated for safety and efficacy in pneumonia and urinary tract infection murine models. The efforts in Aim 3 will inform the target product profile (TPP) of the candidate compound, and preliminary scale-up work will be performed to facilitate transfer of the synthetic route of the compound to a contract manufacturing organization. At the conclusion of this two-year grant, Agile Sciences will have declared an IND candidate compound and defined the TPP so as to facilitate follow-on IND-enabling studies.
描述(由申请人提供):抗生素耐药性已被世界卫生组织宣布为对人类健康的三大威胁之一,由多重耐药(MDR)细菌病原体引起的感染对社会造成巨大的健康和经济影响。由于耐药性的快速获得和抗生素开发计划的停滞而导致缺乏有效的治疗选择,这种治疗选择的缺乏对于耐多药革兰氏阴性病原体(例如铜绿假单胞菌)尤其重要。鲍曼不动杆菌和肺炎克雷伯菌表现出极大的阻碍抗生素治疗和标准医院消毒程序的倾向,Agile Sciences 正在开发一种基于 2-氨基咪唑 (2-AI) 支架的新型小分子,可大大提高抗生素治疗和标准医院消毒程序的效果。 MDR 细菌对抗生素治疗的敏感性。作为当前抗生素的辅助疗法,2-AI 分子有可能为 MDR 提供大大改进的治疗选择。革兰氏阴性细菌感染。第一阶段的等效工作显示了 2-AI 化合物作为对抗 MDR 革兰氏阴性细菌病原体的抗生素增强剂的潜力。我们的努力表明:1)两种先导化合物,AGL-503 和 AGL-553。 ,能够降低针对 MDR 革兰氏阴性菌的抗生素 MIC 值;2) AGL-503-美罗培南联合疗法能够提高生存率并减少细菌负担(与单独使用美罗培南相比)在耐多药铜绿假单胞菌急性肺部感染模型中;3) 2-AI 化合物具有良好的安全性和药物特性;4) 2-AI 化合物通过一种新的作用机制发挥作用,可延缓抗菌素耐药性。持续开发计划,以确定 2-AI 类分子作为治疗 MDR 革兰氏阴性菌引起的感染的抗生素联合疗法的潜在治疗效用。在第二阶段,我们将重点开发 2-AI 类分子。首先,在目标 1 中,我们将确定针对铜绿假单胞菌、肺炎克雷伯菌和鲍曼不动杆菌的先导 2-AI 化合物的最佳抗生素组合。将使用小鼠大腿感染模式评估最佳组合的药效学。在目标 2 中,将通过脱靶面板筛选评估 AGL-503 和 AGL-553 的脱靶效应。目标结合的特征。目标 1 中最有希望的结果将在肺炎和尿路感染小鼠模型中评估其安全性和有效性。目标 3 中的努力将为目标产品概况(TPP)提供信息。 )的候选化合物,并将进行初步的放大工作,以促进该化合物的合成路线转移到合同生产组织。在这两年的资助结束时,敏捷科学公司将宣布一个 IND 候选化合物。并定义了TPP,以促进后续的IND研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daina Zeng其他文献
Daina Zeng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daina Zeng', 18)}}的其他基金
Development of novel anti-biofilm compounds for treating chronic wounds
开发用于治疗慢性伤口的新型抗生物膜化合物
- 批准号:
8986745 - 财政年份:2011
- 资助金额:
$ 64.11万 - 项目类别:
Development of novel anti-biofilm compounds for treating chronic wounds
开发用于治疗慢性伤口的新型抗生物膜化合物
- 批准号:
8832075 - 财政年份:2011
- 资助金额:
$ 64.11万 - 项目类别:
相似国自然基金
基因ytnP克隆表达及其对鲍曼不动杆菌的群体淬灭作用及机制研究
- 批准号:82360003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
抗碳青霉烯耐药鲍曼不动杆菌新型BfmR抑制剂的发现与活性研究
- 批准号:82304377
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗CRISPR蛋白抑制CRISPR-Cas系统介导鲍曼不动杆菌耐药和毒力演化机制研究
- 批准号:82373637
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鲍曼不动杆菌ATCC 17961 O-抗原、荚膜多糖 K15和K35 抗原的合成及生物活性研究
- 批准号:22377043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
邻氨基苯甲酸群体感应系统调控鲍曼不动杆菌耐药和毒力的分子机制
- 批准号:32300033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FabI Inhibitors as Potent, Gut Microbiome-Sparing Antibiotics
FabI 抑制剂是有效的、保护肠道微生物群的抗生素
- 批准号:
10673319 - 财政年份:2023
- 资助金额:
$ 64.11万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 64.11万 - 项目类别:
Post-translational modification of GlyGly-Cterm Proteins
GlyGly-Cterm 蛋白的翻译后修饰
- 批准号:
10749396 - 财政年份:2023
- 资助金额:
$ 64.11万 - 项目类别:
Biomimetic Macrophage Membrane-Coated Nanosponges: A Novel Therapeutic for Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Hospital-Associated Pneumonia
仿生巨噬细胞膜包被的纳米海绵:一种治疗多重耐药铜绿假单胞菌和鲍曼不动杆菌医院相关肺炎的新疗法
- 批准号:
10674406 - 财政年份:2023
- 资助金额:
$ 64.11万 - 项目类别: