Ultra-Rare Cell In Vivo Flow Cytometry
体内超稀有细胞流式细胞术
基本信息
- 批准号:8885325
- 负责人:
- 金额:$ 34.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AMD3100AdhesionsAffectAlgorithmsAnimalsAreaBiologyBiomedical ResearchBloodBlood CirculationBlood VesselsBlood VolumeBlood flowBlood specimenBone MarrowCell CountCell SurvivalCellsClinical TrialsCollectionCombined Modality TherapyCommunitiesCoupledDetectionDiffuseDiseaseElementsErythrocytesExploratory/Developmental Grant for Diagnostic Cancer ImagingFiberFlow CytometryFluorescenceFrequenciesGoalsHematologic NeoplasmsImmunologyIndividualLabelLasersLeadLightLimb structureMalignant NeoplasmsMethodsMicroscopicMolecularMultiple MyelomaMusNational Heart, Lung, and Blood InstituteNeoplasm MetastasisOpticsOrgan TransplantationOutcomePatientsPhotonsPopulationReproductive ImmunologyReproductive MedicineResearchResidual NeoplasmResidual stateResistanceSCID MiceSamplingScanningTechnologyTestingTissuesTransplantationWorkchemotherapydesigndetectorefficacy testingimage processingin vivoinstrumentminiaturizenext generationnovelnovel therapeuticsperipheral bloodphantom modelpublic health relevanceresearch studysignal processingstem cell therapytooltreatment strategy
项目摘要
DESCRIPTION: There are many areas of biomedical research where the study of rare circulating cells is important. Examples include cancer metastasis, hematological malignancies, organ transplant biology, immunology, and reproductive medicine and stem-cell therapies. In this project we will develop a new high-throughput optical scanner with unprecedented capabilities for studying rare circulating cells in small animals in vivo. Circulating cells are normally quantified by drawing small blood samples which are purified and analyzed with hemocytometry or flow cytometry. However, it is known that handling and purifying blood samples can affect cell viability, and that rare cells can escape detection due to the small sampling volume. More recently, `in vivo flow cytometry' (IVFC) methods have been developed that allow enumeration of cells without drawing samples. While extremely useful, these generally rely on interrogation of microscopic blood vessels with small flow rates, so that rare cells are undetectable. New high-sensitivity and high-accuracy tools for studying circulating cells
are therefore greatly needed by the research community. In this proposal we will develop a miniaturized optical scanner that will use diffuse photons to interrogate circulating blood in the limb of a mouse. The technology - termed "ultra-rare cell IVFC" (UR-IVFC) - will employ a number of unique design elements including, i) multiple tomographic optical rings with fiber-coupled lasers and fluorescence detectors, ii) efficient geometric light collection, iii) frequency
encoded lasers and detector channels, and, iv) advanced signal processing algorithms for accurate counting and tracking of cells. In combination, UR-IVFC will allow single-cell sensitivity
in a 10 minute scan and with a false alarm rate less than 0.001 per minute. We anticipate that the unique capabilities of UR-IVFC will have immediate impact in many research fields. We will first use UR-IVFC to study treatment of multiple myeloma (MM), a hematological malignancy for which there is currently no cure. We will study "cell mobilization therapy", which is an emerging treatment strategy for MM. MM cells are chemically forced from the protective bone marrow niche into circulation where they are vulnerable to chemotherapy. We will use UR-IVFC to study whether specific clonal sub-populations of MM cells are resistant to mobilization, and we will test
the efficacy of mobilizing agents for minimal residual disease (MRD). In addition to illuminating molecular mechanisms of MM biology and treatment resistance, these studies could yield new therapeutic strategies for patients suffering from MM. Moreover they are extremely difficult (or outright infeasible) to perform with existing technology.
描述:在生物医学研究的许多领域,稀有循环细胞的研究都很重要,例如癌症转移、血液恶性肿瘤、器官移植生物学、免疫学、生殖医学和干细胞疗法。具有前所未有的能力的高通量光学扫描仪,用于研究小动物体内的稀有循环细胞。通常通过抽取小量血液样本来定量这些血液样本,并用血细胞计数法或流式细胞术进行分析。处理和纯化血液样本会影响细胞活力,并且由于采样量小,稀有细胞可能会逃避检测。最近,已经开发出“体内流式细胞术”(IVFC)方法,无需抽取样本即可进行细胞计数。虽然非常有用,但它们通常依赖于以小流速探查显微血管,因此无法检测到用于研究循环细胞的新的高灵敏度和高精度工具。
因此,研究界非常需要这种技术,在这项提案中,我们将开发一种小型光学扫描仪,该扫描仪将使用漫射光子来检查小鼠肢体中的循环血液,该技术被称为“超稀有细胞 IVFC”(UR-IVFC)。 ) - 将采用许多独特的设计元素,包括,i) 带有光纤耦合激光器和荧光探测器的多个断层光学环,ii) 高效的几何光收集,iii) 频率
编码激光和检测器通道,以及,iv) 用于精确计数和跟踪细胞的先进信号处理算法,结合起来,UR-IVFC 将实现单细胞灵敏度。
扫描时间为 10 分钟,误报率低于每分钟 0.001。我们预计 UR-IVFC 的独特功能将在许多研究领域产生直接影响。我们将首先使用 UR-IVFC 来研究多发性骨髓瘤的治疗。 MM),一种目前无法治愈的血液恶性肿瘤,我们将研究“细胞动员疗法”,这是一种新兴的治疗策略,用于将 MM 细胞从保护性骨髓化学环境中强制转移。我们将使用 UR-IVFC 来研究 MM 细胞的特定克隆亚群是否对动员有抵抗力,并且我们将进行测试。
除了阐明 MM 生物学和治疗耐药性的分子机制外,这些研究还可以为 MM 患者提供新的治疗策略。使用现有技术执行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Jonathan Niedre其他文献
Mark Jonathan Niedre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Jonathan Niedre', 18)}}的其他基金
Continuous, Non-Invasive Optical Monitoring of Circulating Tumor Cell-Mediated Metastasis in Awake Mice
连续、非侵入性光学监测清醒小鼠循环肿瘤细胞介导的转移
- 批准号:
10583556 - 财政年份:2022
- 资助金额:
$ 34.81万 - 项目类别:
Continuous, Non-Invasive Optical Monitoring of Circulating Tumor Cell-Mediated Metastasis in Awake Mice
连续、非侵入性光学监测清醒小鼠循环肿瘤细胞介导的转移
- 批准号:
10387600 - 财政年份:2022
- 资助金额:
$ 34.81万 - 项目类别:
Fluorescence Molecular In Vivo Liquid Biopsy of Circulating Tumor Cells
循环肿瘤细胞的荧光分子体内液体活检
- 批准号:
10322183 - 财政年份:2021
- 资助金额:
$ 34.81万 - 项目类别:
Fluorescence Molecular In Vivo Liquid Biopsy of Circulating Tumor Cells
循环肿瘤细胞的荧光分子体内液体活检
- 批准号:
10112518 - 财政年份:2021
- 资助金额:
$ 34.81万 - 项目类别:
High Resolution Multiplexed Fluorescence Tomography
高分辨率多重荧光断层扫描
- 批准号:
8301487 - 财政年份:2010
- 资助金额:
$ 34.81万 - 项目类别:
Tomographic In Vivo Flow Cytometer for Counting Rare Circulating Cells
用于计数稀有循环细胞的断层成像体内流式细胞仪
- 批准号:
7772548 - 财政年份:2010
- 资助金额:
$ 34.81万 - 项目类别:
Tomographic In Vivo Flow Cytometer for Counting Rare Circulating Cells
用于计数稀有循环细胞的断层成像体内流式细胞仪
- 批准号:
8019435 - 财政年份:2010
- 资助金额:
$ 34.81万 - 项目类别:
High Resolution Multiplexed Fluorescence Tomography
高分辨率多重荧光断层扫描
- 批准号:
8105072 - 财政年份:2010
- 资助金额:
$ 34.81万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A non-myeloablative conditioning regimen for hematopoietic stem cell transplantat
造血干细胞移植的非清髓性预处理方案
- 批准号:
8644968 - 财政年份:2014
- 资助金额:
$ 34.81万 - 项目类别:
Targeting cell trafficking as a new therapeutic modality for Multiple Myeloma
靶向细胞运输作为多发性骨髓瘤的新治疗方式
- 批准号:
7673688 - 财政年份:2008
- 资助金额:
$ 34.81万 - 项目类别:
Targeting cell trafficking as a new therapeutic modality for Multiple Myeloma
靶向细胞运输作为多发性骨髓瘤的新治疗方式
- 批准号:
8110083 - 财政年份:2008
- 资助金额:
$ 34.81万 - 项目类别: