Enhanced Ascertainment of Asthma Status Via Natural Language Processing

通过自然语言处理增强哮喘状态的确定

基本信息

  • 批准号:
    8860691
  • 负责人:
  • 金额:
    $ 19.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-15 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): It is estimated that almost one-half of Americans suffer from chronic diseases, yet epidemiologic investigations are limited by the difficulty of ascertaining disease status at scale, even in the era of electronic medical records (EMRs). For example, algorithms based on structured data (e.g., ICD-9 codes) for asthma lack the sensitivity required for population-based studies, while manual medical record reviews of EMRs are labor-intensive and thus inefficient for population-scale ascertainment of disease status. The lack of efficient ways to ascertain disease status has severely restricted the scope of investigation for chronic diseases such as asthma. Furthermore, there is a temporal progression of a patient's true disease status, and this may not be reflected in the clinical diagnosis of that disease. We previously reported that two-thirds of children with asthma had a delay in their diagnosis (median: 3.3 years), with subsequent conditions like remission or relapse largely unreported. Such information about disease progression may be recorded during manual medical record review, but, again, manual review limits investigations and conclusions to small-scale studies. Our long term goal is to accelerate epidemiological investigations of chronic diseases and their temporal progression by streamlining medical record review. The main goal of this proposal is to extend a preliminary NLP-based system for asthma status ascertainment by identifying time-situated classifications of asthma onset, remission, and relapse. We will validate this system in a population health setting and release it as an open-source tool. We hypothesize that NLP methods in the EMR allow us to ascertain asthma status and to track asthma disease progression with greater accuracy and efficiency than conventional approaches (billing codes or manual medical record review). In Aim 1, we will extend our preliminary NLP system to ascertain the patient-level disease progression of asthma. Most significantly, we will ascertain time-situated asthma remission and relapse, two important events in the natural history of asthma. We will also improve methods of aggregating events, employ temporal expression and relation extraction, include structured data sources, and implement automatic feature selection. In Aim 2, we will evaluate the NLP system for its accuracy in ascertaining asthma onset, relapse, and remission. We will also verify the epidemiological (construct) validity against existing studies, and disseminate the NLP system as an open-source project, Adept (Aggregation of Disease Evidence for Patient Timelines). Expected Outcomes: The proposed NLP system will: (i) orient clinical NLP techniques toward time-situated patient-level solutions; (ii) expand the scale of research capabilities for asthma; and (iii) provide a basis for decision support and other applications. Successful completion of this project would provide an open-source tool for ascertaining the disease progression of asthma with a general approach to aggregating evidence.
 描述(由申请人提供):据估计,近一半的美国人患有慢性病,但即使在电子病历 (EMR) 时代,流行病学调查也因难以大规模确定疾病状况而受到限制。例如,基于哮喘结构化数据(例如 ICD-9 代码)的算法缺乏基于人群的研究所需的敏感性,而 EMR 的手动医疗记录审查是劳动密集型的,因此对于人群规模来说效率低下疾病状态的确定。缺乏有效的方法来确定疾病状态严重限制了慢性疾病(例如哮喘)的调查范围。此外,患者的真实疾病状态存在时间进展,这可能无法反映在疾病状态中。我们之前报道过,三分之二的哮喘儿童的诊断存在延迟(中位值:3.3 年),随后的病情缓解或复发等情况在很大程度上未报告,此类有关疾病进展的信息可能会在手册中记录下来。病历我们的长期目标是通过简化病历审查来加速慢性病及其时间进展的流行病学调查。通过识别哮喘发作、缓解和复发的时间分类来确定基于 NLP 的初步系统,我们将在人群健康环境中验证该系统,并将其作为开源工具发布。 EMR 允许与传统方法(计费代码或手动病历审核)相比,我们能够更准确、更高效地确定哮喘状态并跟踪哮喘疾病进展。在目标 1 中,我们将扩展我们的初步 NLP 系统,以确定哮喘患者的疾病进展。最重要的是,我们将确定哮喘缓解和复发的时间,这是哮喘自然史中的两个重要事件。我们还将改进聚合事件的方法,采用时间表达和关系提取,包括结构化数据源,并实现自动特征。在目标 2 中,我们将评估 NLP 系统在确定哮喘发作、复发和缓解方面的准确性。我们还将根据现有研究验证流行病学(构建)有效性,并将 NLP 系统作为开源项目进行传播。 ,Adept(针对患者时间线的疾病证据聚合):拟议的 NLP 系统将:(i)将临床 NLP 技术定位于基于时间的患者级解决方案; (ii) 扩大哮喘研究能力的规模;(iii) 为决策支持和其他应用提供基础,该项目的成功完成将为确定哮喘疾病进展提供一个通用方法。汇总证据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOUNG J JUHN其他文献

YOUNG J JUHN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOUNG J JUHN', 18)}}的其他基金

Improving the Risk Adjustment Method for Quality Care Measures through Application of an Innovative Individual-Level Socioeconomic Measure
通过应用创新的个人层面的社会经济措施,改进优质护理措施的风险调整方法
  • 批准号:
    10213256
  • 财政年份:
    2021
  • 资助金额:
    $ 19.88万
  • 项目类别:
Improving the Risk Adjustment Method for Quality Care Measures through Application of an Innovative Individual-Level Socioeconomic Measure
通过应用创新的个人层面的社会经济措施,改进优质护理措施的风险调整方法
  • 批准号:
    10394328
  • 财政年份:
    2021
  • 资助金额:
    $ 19.88万
  • 项目类别:
Asthma ascertainment and characterization through electronic health records
通过电子健康记录确定和表征哮喘
  • 批准号:
    9032521
  • 财政年份:
    2015
  • 资助金额:
    $ 19.88万
  • 项目类别:
Identification and characterization of children with asthma-associated comorbidities through computational and immune phenotyping
通过计算和免疫表型分析患有哮喘相关合并症的儿童的识别和特征分析
  • 批准号:
    10337267
  • 财政年份:
    2015
  • 资助金额:
    $ 19.88万
  • 项目类别:
Asthma ascertainment and characterization through electronic health records
通过电子健康记录确定和表征哮喘
  • 批准号:
    8853379
  • 财政年份:
    2015
  • 资助金额:
    $ 19.88万
  • 项目类别:
Enhanced Ascertainment of Asthma Status Via Natural Language Processing
通过自然语言处理增强哮喘状态的确定
  • 批准号:
    8995191
  • 财政年份:
    2015
  • 资助金额:
    $ 19.88万
  • 项目类别:
Risk of Herpes Zoster Among Adults with Asthma
成人哮喘患者患带状疱疹的风险
  • 批准号:
    8346055
  • 财政年份:
    2012
  • 资助金额:
    $ 19.88万
  • 项目类别:
Risk of Herpes Zoster Among Adults with Asthma
成人哮喘患者患带状疱疹的风险
  • 批准号:
    8495928
  • 财政年份:
    2012
  • 资助金额:
    $ 19.88万
  • 项目类别:
Individual Housing Data and Socioeconomic Status
个人住房数据和社会经济状况
  • 批准号:
    7015211
  • 财政年份:
    2006
  • 资助金额:
    $ 19.88万
  • 项目类别:
Individual Housing Data and Socioeconomic Status
个人住房数据和社会经济状况
  • 批准号:
    7229827
  • 财政年份:
    2006
  • 资助金额:
    $ 19.88万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
  • 批准号:
    10665905
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
  • 批准号:
    10656807
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
A mobile health framework for left ventricular end diastolic pressure diagnostics and monitoring.
用于左心室舒张末压诊断和监测的移动健康框架。
  • 批准号:
    10601929
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
  • 批准号:
    10759110
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了