Exploring the effects of multi-iron site cooperativity and second sphere ligand interactions on NN bond cleavage in high-spin iron complexes
探索多铁位点协同性和第二球配体相互作用对高自旋铁配合物中 NN 键断裂的影响
基本信息
- 批准号:9115473
- 负责人:
- 金额:$ 3.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsActive SitesAlkali MetalsAmmoniaAreaBacteriaBindingBiologicalBiologyCarbon MonoxideCatalysisChemicalsChemistryCleaved cellCommunitiesComplexCrown EthersData AnalysesDevelopmentElectron Nuclear Double ResonanceElectronicsElectronsEnvironmentEnzymesFertilizersHydrogenImidazoleIndustryInvestigationIronIron CompoundsKineticsLeftLifeLigandsMetalsMethodsMolybdoferredoxinNitrogenNitrogenaseOrganic Iron CompoundsPlayPreparationProductionProtonsReactionReagentReducing AgentsReportingResearchRoentgen RaysRoleSiteSourceSulfidesSulfurSystemTechniquesTestingWorkanalogbasebiological systemscatalystcofactorelectronic structureflexibilityimprovedinsightinterestmutantnoveloxidationpublic health relevancesmall moleculespectroscopic survey
项目摘要
DESCRIPTION (provided by applicant): Nitrogenase is an enzyme that is able to cleave the seemingly inert NN triple bond to form biologically available ammonia. The enzyme employs a structurally unprecedented Fe-S cluster, the iron-molybdenum cofactor, "FeMoco," to reduce N2 to NH3. Examination of fundamental Fe-N2 chemistry and how changes in coordination at Fe as well as the surrounding environment influence the ability of complexes to reduce N2 in will offer insight to the mechanism of nitrogenase. The effects of these features will be tested by synthesis of complexes that divide and simplify the FeMoco allowing for the study each feature has on Fe-N2 chemistry. The FeMoco contains the only example of a carbide in biology, however, how the carbide effects the Fe centers and their ability to reduce N2 remains speculative. Interactions of Fe-S and Fe-carbide clusters with N2 is unknown in synthetic complexes, and development of Fe-N2 complexes that do possess these ligands will provide a chemical basis for the proposed mechanisms of nitrogenase. Our guiding hypothesis is that N2 binds to the cluster through cleavage of either a Fe-C bond or Fe-S bond leading to a N2 complex that can interact with residues nearby the active site during enzyme turnover. In the proposed research, we plan to synthesize Fe-N2 complexes with novel functionalities: (1) second-sphere protic groups, which we hypothesize will allow for use of milder reagents for N2 reduction to ammonia compared with the systems reported previously that required strong acids, (2) introduction of electron-rich, anionic sulfur ligands should increase the donating abiliy of Fe making the bound N2 easier to reduce, and (3) formation of an Fe-carbide complex that also binds N2 to explore the role of the electron-rich carbide in nitrogenase through a synthetic analogue. Each new set of complexes will be examined through reactivity, kinetic, and X-ray crystallographic studies to understand how each impacts the interaction between Fe and dinitrogen. Study of these complexes through spectroscopic techniques such as EPR, ENDOR, and EXAFS will offer support for the chemical and structural interpretation of the data from nitrogenase.
描述(由申请人提供):固氮酶是一种能够裂解看似惰性的 NN 三键以形成生物可用氨的酶,该酶采用结构上前所未有的 Fe-S 簇(铁-钼辅因子“FeMoco”)来生成氨。将 N2 还原为 NH3 的基本 Fe-N2 化学以及 Fe 配位变化以及周围环境如何影响配合物还原 N2 的能力将提供。对固氮酶机制的深入了解将通过合成复合物来测试,这些复合物可分割和简化 FeMoco,从而可以研究每个特征对 Fe-N2 化学的影响。FeMoco 包含生物学中唯一的碳化物示例。然而,碳化物如何影响 Fe 中心及其还原 N2 的能力仍然是推测。在合成复合物中,Fe-S 和 Fe-碳化物簇与 N2 的相互作用尚不清楚,并且开发具有这些功能的 Fe-N2 复合物。配体将为所提出的固氮酶引导机制提供化学基础,我们的假设是,N2 通过 Fe-C 键或 Fe-S 键的裂解与簇结合,形成 N2 复合物,该复合物可以与活性附近的残基相互作用。在拟议的研究中,我们计划合成具有新功能的 Fe-N2 复合物:(1)第二球质子基团,与相比,我们能够使用更温和的试剂将 N2 还原为氨。之前报道的系统需要强酸,(2) 引入富电子的阴离子硫配体应该增加 Fe 的供体胆汁,使结合的 N2 更容易还原,(3) 形成也结合的 Fe-碳化物络合物N2 通过合成类似物探索富电子碳化物在固氮酶中的作用 每一组新的配合物都将通过反应性、动力学和 X 射线晶体学研究进行检查,以了解每种配合物如何影响之间的相互作用。 Fe 和二氮。通过 EPR、ENDOR 和 EXAFS 等光谱技术对这些复合物的研究将为固氮酶数据的化学和结构解释提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean McWilliams其他文献
Sean McWilliams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
Standard Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 3.72万 - 项目类别:
CAREER: Biomimetic Swarm of Active Colloids with Off-Center Interaction Sites
职业:具有偏离中心相互作用位点的仿生活性胶体群
- 批准号:
2238915 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Continuing Grant