Novel methods for identifying genetic interactions in cancer prognosis
识别癌症预后中遗传相互作用的新方法
基本信息
- 批准号:9079917
- 负责人:
- 金额:$ 38.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAttentionBenchmarkingBioinformaticsCancer PrognosisClinicalComputer softwareDataData AnalysesData CollectionDevelopmentEducational workshopEnvironmentEvaluationExploratory/Developmental Grant for Diagnostic Cancer ImagingFutureGenesGeneticIndividualInvestigationJointsLeadMalignant NeoplasmsMalignant neoplasm of lungMedical RecordsMethodsModelingNon-Hodgkin&aposs LymphomaPaperPatternPlayPropertyPublishingResourcesRisk FactorsRoleStatistical Data InterpretationStressTechniquesTimeUnited States National Institutes of HealthWorkbasebiomarker identificationcancer geneticscancer typecase controlexperiencefrontiergene interactionmelanomamethod developmentnoveloutcome forecastprognosticpublic health relevancesimulationsuccessweb site
项目摘要
DESCRIPTION (provided by applicant): Project Summary In cancer prognosis, beyond the main effects of environmental/clinical (E) and genetic (G) risk factors, the interactions between G and E factors (G*E interactions) and those between G and G factors (G*G interactions) also play critical roles. The existing findings are insufficient, and there is a strong need for identifing more prognostic interactions. Most of the existing effort has been focused on data collection. In contrast, the development of effective analysis methods has been lagging behind. Compared to data collection, methodological development takes much less resources but is equally critical in making reliable findings. Most of the existing interaction analysis methods share the limitation of lacking robustness properties. In practice, data contamination and model mis-specification are not uncommon and can lead to severely biased model parameter estimation and false marker identification. The development of robust genetic interaction analysis methods is very limited. There are a few methods for case-control data, but they are not applicable to prognosis data. For prognosis data and interaction analysis, there is some very recent progress in quantile regression and rank-based methods, but the development has been limited and unsystematic. Last but not least, the existing robust methods have the common drawback of adopting ineffective marker selection techniques. Our group has been at the frontier of developing robust interaction analysis methods. Our statistical investigations and simulations have provided convincing evidences that the robust methods using the penalization technique outperform alternatives with significantly more accurate marker identification and model parameter estimation. In data analysis, important interactions missed by the existing analyses have been identified for multiple cancer types. However, we have also found that the scope of the existing studies needs to be significantly expanded in terms of both methodological development and data analysis. This project has been motivated by the importance of interactions in cancer prognosis and limitations of the existing studies. Our objectives are as follows. (Aim 1) Develop novel marginal analysis methods that are robust to data contamination and model mis-specification for identifying important interactions. (Aim 2) Develop novel joint analysis methods that are robust to data contamination and model mis-specification for identifying important interactions. (Aim 3) Develop tailored inference approaches to draw more definitive conclusions on the identified interactions. (Aim 4) Develop public R software and a dynamic project website. Identify prognostic interactions for multiple cancers. For the identified interactions, we will conduct extensive bioinformatic and statistical analysis, evaluations, and comparisons. With our unique expertise, extensive experiences, and promising preliminary studies, this project has a high likelihood of success.
描述(由申请人提供): 项目概要 在癌症预后中,除了环境/临床(E)和遗传(G)风险因素的主要影响外,G 和 E 因素之间的相互作用(G*E 相互作用)以及 G 和 E 之间的相互作用G 因素(G*G 相互作用)也发挥着关键作用,现有的研究结果还不够,因此迫切需要确定更多的预后相互作用。相反,现有的大部分工作都集中在有效性的开发上。分析方法已与数据收集相比,方法开发所需的资源要少得多,但在获得可靠的结果方面同样重要。在实践中,大多数现有的交互分析方法都存在缺乏稳健性的局限性,数据污染和模型错误指定并不存在。遗传相互作用分析方法的发展非常有限,但它们不适用于预后数据和预后数据。交互分析,有一些分位数回归和基于排名的方法最近取得了进展,但发展有限且不系统。最后但并非最不重要的一点是,现有的稳健方法具有采用无效标记选择技术的共同缺点。我们的统计调查和模拟提供了令人信服的证据,表明使用惩罚技术的稳健方法优于具有更准确的标记识别和模型参数估计的替代方法,在数据分析中,已识别出现有分析遗漏的重要相互作用。多种癌症类型。我们还发现,现有研究的范围需要在方法开发和数据分析方面显着扩大,该项目的动机是相互作用在癌症预后中的重要性和现有研究的局限性。 (目标 1)开发新的边际分析方法,该方法对数据污染和模型错误指定具有鲁棒性,以识别重要的交互作用。(目标 2)开发新的联合分析方法,对数据污染和模型错误指定具有鲁棒性,以识别重要的交互作用。互动。 (目标 3)开发定制的推理方法,以就已确定的相互作用得出更明确的结论。(目标 4)开发公共 R 软件和动态项目网站。对于已确定的相互作用,我们将进行广泛的生物信息学和分析。凭借我们独特的专业知识、丰富的经验和有希望的初步研究,该项目成功的可能性很高。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuangge Ma其他文献
Shuangge Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuangge Ma', 18)}}的其他基金
Cancer Emulation Analysis with Deep Neural Network
使用深度神经网络进行癌症仿真分析
- 批准号:
10725293 - 财政年份:2023
- 资助金额:
$ 38.28万 - 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
- 批准号:
10676303 - 财政年份:2022
- 资助金额:
$ 38.28万 - 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
- 批准号:
10515491 - 财政年份:2022
- 资助金额:
$ 38.28万 - 项目类别:
Assisted Network-based Analysis of Cancer Gene Expression Studies
癌症基因表达研究的辅助网络分析
- 批准号:
9306472 - 财政年份:2017
- 资助金额:
$ 38.28万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10311368 - 财政年份:2016
- 资助金额:
$ 38.28万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10668282 - 财政年份:2016
- 资助金额:
$ 38.28万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10451680 - 财政年份:2016
- 资助金额:
$ 38.28万 - 项目类别:
Core B: Biostatistics and Bioinformatics Core
核心 B:生物统计学和生物信息学核心
- 批准号:
10203852 - 财政年份:2015
- 资助金额:
$ 38.28万 - 项目类别:
Penalization methods for identifying gene envrionment interactions and applications to melanoma and other cancer types
识别基因环境相互作用的惩罚方法及其在黑色素瘤和其他癌症类型中的应用
- 批准号:
8990829 - 财政年份:2014
- 资助金额:
$ 38.28万 - 项目类别:
相似国自然基金
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
- 批准号:82300039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A6通过调控ZNF750组蛋白甲基化促进糖尿病角质形成细胞分化障碍的机制研究
- 批准号:82302802
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤相关成纤维细胞通过CCL5/CCR5轴促进神经内分泌前列腺癌顺铂耐药的机制研究
- 批准号:82373358
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鼻腔共生表皮葡萄球菌通过抗菌肽-moDC-CCL17通路抑制过敏性鼻炎的分子机制
- 批准号:82302595
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 38.28万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 38.28万 - 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 38.28万 - 项目类别:
Making Healthy Habits Stick: Extended Contact Interventions to Promote Long Term Physical Activity in African American Cancer Survivors
养成健康习惯:延长接触干预措施以促进非裔美国癌症幸存者的长期身体活动
- 批准号:
10821052 - 财政年份:2023
- 资助金额:
$ 38.28万 - 项目类别: