Reducing mastectomy rates in invasive lobular carcinoma by high-resolution 3D breast CT

通过高分辨率 3D 乳腺 CT 降低浸润性小叶癌的乳房切除率

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Cancers of the breast are the second most common type of breast cancers (after invasive ductal carcinoma, IDC) and account for 10-15% of all breast cancers. More than any other breast cancer, lobular cancers present as multifocal, multicentric and bilateral disease. Among histological types, re- excision rates are highest (28.3%) for invasive lobular carcinoma and substantially more than invasive ductal carcinoma (19.1%). For subjects diagnosed with lobular carcinoma, breast MRI is currently the preferred modality for evaluating disease extent as ultrasound and mammography have been shown to be inferior in accurately estimating tumor size. Meta-analysis of pooled data have shown that breast MRI has a sensitivity of 93.3% for detecting lobular carcinoma with additional lesions detected in 32% and 7% of patients in the ipsilateral and contralateral breasts, respectively. However, for approximately 25% to 35% of tumors, the size estimated from breast MRI differs from pathology by more than 1 cm. The use of pre-operative breast MRI for evaluating disease extent has been associated with increased odds for mastectomy. A recent study analyzing 243 patients with invasive lobular carcinoma (ILC) concluded that ILC can be safely treated with conservative surgery but a more accurate preoperative evaluation of tumor size and multifocality is needed to reduce re-excision rate. We hypothesize the high spatial resolution 3D imaging provided by dedicated breast CT that is capable of resolving features in the 200 to 250 microns range would improve the proportion of tumors that are concordant in size with histopathology and hence would increase the likelihood of subjects being treated with breast conserving surgery. Dedicated breast CT does not require physical compression of the breast and takes 10 seconds for a scan. This prospective clinical study is designed to address if all foci observed with contrast-enhanced breast MRI are also visible with contrast-enhanced breast CT (sensitivity) and if the tumor size determined from breast CT is more concordant with pathology than breast MRI. The study will also investigate two automated segmentation and tumor size quantification methods to determine, which quantitative algorithm is more accurate, with tumor size from surgical pathology serving as reference standard. Thus, the proposed study challenges existing paradigms on the accuracy of tumor size measurements and paves for the way for reducing mastectomy rates.
 描述(由申请人提供): 乳腺癌是第二常见的乳腺癌类型(仅次于浸润性导管癌,IDC),占所有乳腺癌的 10-15%,其中小叶癌比任何其他乳腺癌都要多。作为多灶性、多中心和双侧疾病,在组织学类型中,浸润性小叶癌的再切除率最高(28.3%),并且明显高于浸润性导管癌。 (19.1%),对于诊断为小叶癌的受试者,乳腺 MRI 是目前评估疾病范围的首选方法,因为超声和乳房 X 光检查在准确估计肿瘤大小方面表现较差。检测小叶癌的敏感性为 93.3%,在同侧和对侧乳房中分别有 32% 和 7% 的患者检测到额外病变,但这一比例约为 25% 至 25%。 35% 的乳房 MRI 估计的肿瘤大小与病理结果相差超过 1 厘米。最近一项对 243 名侵入性小叶患者进行分析的研究表明,使用术前乳房 MRI 来评估疾病范围与乳房切除术的几率增加有关。癌症 (ILC) 的结论是,ILC 可以通过保守手术安全治疗,但需要对肿瘤大小和多灶性进行更准确的术前评估,以降低再切除率。我们探索了专用乳房提供的高空间分辨率 3D 成像。 CT 能够分辨 200 至 250 微米范围内的特征,将提高大小与组织病理学一致的肿瘤的比例,从而增加受试者接受保乳手术的可能性。专用乳房 CT 不需要物理压迫。这项前瞻性临床研究旨在解决通过对比增强乳房 MRI 观察到的所有病灶是否也可以通过对比增强乳房 CT 看到(敏感性)。乳腺CT确定的肿瘤大小是否比乳腺MRI更符合病理学。该研究还将研究两种自动分割和肿瘤大小量化方法,以手术病理确定的肿瘤大小作为参考,以确定哪种定量算法更准确。因此,拟议的研究挑战了现有的肿瘤大小测量准确性的范例,并为降低乳房切除率铺平了道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SRINIVASAN VEDANTHAM其他文献

SRINIVASAN VEDANTHAM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SRINIVASAN VEDANTHAM', 18)}}的其他基金

Upright, Low-dose, High-resolution, 3D Breast CT
立式、低剂量、高分辨率、3D 乳腺 CT
  • 批准号:
    10407991
  • 财政年份:
    2019
  • 资助金额:
    $ 30.65万
  • 项目类别:
Upright, Low-dose, High-resolution, 3D Breast CT
立式、低剂量、高分辨率、3D 乳腺 CT
  • 批准号:
    10627825
  • 财政年份:
    2019
  • 资助金额:
    $ 30.65万
  • 项目类别:
Reducing mastectomy rates in invasive lobular carcinoma by high-resolution 3D breast CT
通过高分辨率 3D 乳腺 CT 降低浸润性小叶癌的乳房切除率
  • 批准号:
    9455075
  • 财政年份:
    2017
  • 资助金额:
    $ 30.65万
  • 项目类别:
Quantitative breast cancer risk index from routine 3-D imaging
常规 3D 成像定量乳腺癌风险指数
  • 批准号:
    8489847
  • 财政年份:
    2013
  • 资助金额:
    $ 30.65万
  • 项目类别:
Quantitative breast cancer risk index from routine 3-D imaging
常规 3D 成像定量乳腺癌风险指数
  • 批准号:
    8697025
  • 财政年份:
    2013
  • 资助金额:
    $ 30.65万
  • 项目类别:
Design and Optimization of Dedicated Computed Tomography of the Breast
乳腺专用计算机断层扫描的设计与优化
  • 批准号:
    7731139
  • 财政年份:
    2009
  • 资助金额:
    $ 30.65万
  • 项目类别:
Design and Optimization of Dedicated Computed Tomography of the Breast
乳腺专用计算机断层扫描的设计与优化
  • 批准号:
    7907802
  • 财政年份:
    2009
  • 资助金额:
    $ 30.65万
  • 项目类别:
Design and Optimization of Dedicated Computed Tomography of the Breast
乳腺专用计算机断层扫描的设计与优化
  • 批准号:
    8073116
  • 财政年份:
    2009
  • 资助金额:
    $ 30.65万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
  • 批准号:
    10665905
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
  • 批准号:
    10656807
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
A mobile health framework for left ventricular end diastolic pressure diagnostics and monitoring.
用于左心室舒张末压诊断和监测的移动健康框架。
  • 批准号:
    10601929
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 30.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了