Brainstem control of blood pressure in conscious rodents
脑干对清醒啮齿动物血压的控制
基本信息
- 批准号:9127736
- 负责人:
- 金额:$ 5.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-30 至 2017-06-29
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAnesthesia proceduresAnimalsAreaBlood PressureBrainBrain StemBrain regionBreathingCardiovascular DiseasesCarotid BodyCause of DeathCellsCessation of lifeChimeric ProteinsConsciousDataDiseaseEnvironmental air flowEsthesiaGeneticGenetic RecombinationGlutamatesGoalsHealthHemorrhageHumanHypercapniaHypertensionHypothalamic structureHypoxiaKidneyMaintenanceMammalsMeasuresMethodsMusNerveNeuraxisNeurologicNeuronsNucleus solitariusOrganPathologyPathway interactionsPeripheralPhenotypePhysiologicalPopulationPopulation HeterogeneityPreparationPropertyRattusReflex actionRegulationResearchRestRodentRoleSensorySliceSodiumSpinal CordStressSympathetic Nervous SystemSystemTechniquesTestingTimeTissuesTransgenic MiceTransgenic OrganismsUnited StatesViral VectorWorkadeno-associated viral vectorawakeblood pressure regulationbrain pathwaydesignhypothalamic pituitary axisin vivoloss of functionmind controlmortalityneural circuitnew technologynoveloptogeneticsrecombinaseresearch studysensory inputstressorvector
项目摘要
DESCRIPTION (provided by applicant): Cardiovascular disease is the leading cause of death in the United States today. Hypertension is believed to account to 40% of this mortality. The central nervous system contributes to resting blood pressure, mainly through the sympathetic nervous system, and many forms of hypertension are believed to have a neurological component. How the neural circuitry of the brain controls blood pressure is incompletely understood. Generalized regions of the brain are known to be important, but the specific types of neurons involved, and what they do have been difficult to determine. The objective of the proposed research is to determine the neural circuits in the brain that are responsible for blood pressure control at the cellular level. The experiments will allow for identification and functiona characterization of unique neuronal groups involved in blood pressure control, the second-order neurons of the nucleus of the solitary tract and hypothalamus projecting C1 neurons. The design utilizes state-of-the-art transgenic techniques and physiological recording methods enabling experiments to be performed in conscious, unrestrained animals. The C1 neurons are a population of catcholaminergic neurons localized to the rostral ventrolateral medulla that have been implicated in blood pressure control for decades. Significant research has established C1 neurons are activated by numerous stressors, are likely important for the peripheral chemoreflex and may provide for resting sympathetic tone. However, acute loss-of-function of C1 neurons, to confirm their role in blood pressure maintenance, has not been achieved in conscious animals. In addition, there exist at least two subpopulations of C1 neurons; those that project to the spinal cord and those that project to the hypothalamus, which may have differential effect on blood pressure, but have yet to be examined physiologically. In Aim 1 I propose experiments that allow for C1 neuron-specific acute inhibition under resting and hypoxic conditions, and in Aim 2 a novel transgenic approach to functionally dissect spinally-projecting and hypothalamic-projecting C1 neurons and their roles in BP control. The second-order neurons of the nucleus of the solitary tract receive inputs from various sensory organs, and relay this information throughout the brainstem. There are numerous sensory inputs that converge in the same area, making it difficult to functionally dissect these second-order neurons. The peripheral chemoreflex, sensation of arterial hypoxia and hypercapnia, is particularly important for blood pressure control and hypertension pathology. Previous experiments have been able to identify second-order neurons responsible for the peripheral chemoreflex, however the full extent of their projections and physiological capabilities are still unknown. In Aim 3 of this proposal, I wil use a new technology that will allow for genetic targeting of the hypoxia-sensitive neurons of the NTS to identify and functionally confirm their projections.
描述(由申请人提供):心血管疾病是当今美国死亡的主要原因,据信高血压占该死亡率的 40%。中枢神经系统主要通过交感神经系统影响静息血压。许多形式的高血压被认为与神经系统有关。大脑的神经回路如何控制血压尚不完全清楚,但所涉及的神经元的具体类型及其作用尚不完全清楚。有这项研究的目的是确定大脑中负责细胞水平血压控制的神经回路,这些实验将能够识别与血压有关的独特神经群并对其进行功能表征。控制,孤束核和下丘脑投射 C1 神经元的二级神经元该设计利用最先进的转基因技术和生理记录方法,使实验能够在有意识、不受约束的动物中进行。是几十年来,大量研究表明,位于延髓头侧腹外侧的一类神经元与血压控制有关,C1 神经元可被多种应激源激活,可能对外周化学反射很重要,并可能提供静息交感神经张力。 ,C1神经元的急性功能丧失,以证实它们在维持血压中的作用,尚未在有意识的动物中实现。此外,至少存在两个C1神经元亚群;那些投射到脊髓的神经元和那些投射到下丘脑的神经元,可能对血压有不同的影响,但尚未进行生理学检查。在目标 1 中,我提出了允许在静息和静息状态下进行 C1 神经元特异性急性抑制的实验。在缺氧条件下,目标 2 中采用一种新的转基因方法来功能性地解剖脊髓投射和下丘脑投射 C1 神经元及其在血压控制中的作用。神经束接收来自各种感觉器官的输入,并将这些信息传递到整个脑干。有许多感觉输入汇聚在同一区域,因此很难在功能上解剖这些二阶神经元。外周化学反射、动脉缺氧和高碳酸血症的感觉。 ,对于血压控制和高血压病理学尤其重要,之前的实验已经能够识别负责外周化学反射的二级神经元,但其预测和生理功能的全部范围仍然未知。在该提案的第 3 部分中,我将使用一项新技术,该技术将允许对 NTS 的缺氧敏感神经元进行基因靶向,以识别并在功能上确认它们的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Christopher Wenker其他文献
Ian Christopher Wenker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Christopher Wenker', 18)}}的其他基金
The neural circuitry of seizure-induced apnea and SUDEP
癫痫发作引起的呼吸暂停和 SUDEP 的神经回路
- 批准号:
10719519 - 财政年份:2023
- 资助金额:
$ 5.61万 - 项目类别:
Role of carboxyl-terminal modulator protein in autophagy and senescence of human induced pluripotent stem cells
羧基末端调节蛋白在人诱导多能干细胞自噬和衰老中的作用
- 批准号:
10756824 - 财政年份:2019
- 资助金额:
$ 5.61万 - 项目类别:
Carboxyl-terminal modulator protein, Aβ and brain aging
羧基末端调节蛋白、Aβ 和大脑衰老
- 批准号:
9816648 - 财政年份:2019
- 资助金额:
$ 5.61万 - 项目类别:
Brainstem control of blood pressure in conscious rodents
脑干对清醒啮齿动物血压的控制
- 批准号:
8907534 - 财政年份:2015
- 资助金额:
$ 5.61万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Neurobehavioral Disorders after Appendectomy in Childhood
儿童期阑尾切除术后的神经行为障碍
- 批准号:
10401421 - 财政年份:2020
- 资助金额:
$ 5.61万 - 项目类别:
Neurobehavioral Disorders after Appendectomy in Childhood
儿童期阑尾切除术后的神经行为障碍
- 批准号:
10159944 - 财政年份:2020
- 资助金额:
$ 5.61万 - 项目类别:
Brainstem control of blood pressure in conscious rodents
脑干对清醒啮齿动物血压的控制
- 批准号:
8907534 - 财政年份:2015
- 资助金额:
$ 5.61万 - 项目类别:
Clinical Centers (CC) for the NHLBI Prevention and Early Treatment of Acute Lung
NHLBI 急性肺疾病预防和早期治疗临床中心 (CC)
- 批准号:
8874286 - 财政年份:2014
- 资助金额:
$ 5.61万 - 项目类别:
Clinical Centers (CC) for the NHLBI Prevention and Early Treatment of Acute Lung
NHLBI 急性肺疾病预防和早期治疗临床中心 (CC)
- 批准号:
8707060 - 财政年份:2014
- 资助金额:
$ 5.61万 - 项目类别: