HRS targeting of ON and OFF ganglion cells
HRS 靶向 ON 和 OFF 神经节细胞
基本信息
- 批准号:9113664
- 负责人:
- 金额:$ 34.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAxonBiophysical ProcessBlindedBrainCalcium ionCell modelCellsClinicalComputer SimulationDevelopmentDevicesElectrodesElementsEvaluationExhibitsGated Ion ChannelGoalsHealthHouseholdIon ChannelLeadLightMacular degenerationMeasuresMediatingMethodsMusNeuronsOcular ProsthesisOutcomeOutputPatternPhysiologic pulsePhysiologicalPhysiologyPotassium ChannelProcessProsthesisPulse RatesReadingReportingResolutionRetinaRetinalRetinal DegenerationRetinal DiseasesRetinal Ganglion CellsRetinitis PigmentosaSchemeSeriesShapesSignal TransductionStimulusTestingTrainingVisionbiophysical propertiesblindcell typeganglion cellimprovedimproved outcomeneural circuitrelating to nervous systemresearch studyresponseretinal neuronretinal prosthesissodium ionvoltage
项目摘要
DESCRIPTION (provided by applicant): Retinal prosthetics strive to restore vision to those blinded by outer retinal diseases such as macular degeneration and retinitis pigmentosa. There has been considerable progress in recent years with reports of previously-blind subjects identifying household objects, navigating in limited ways through unfamiliar landscapes and even reading. Despite this progress however, the overall quality of elicited vision is still remais somewhat limited. For example, even the fastest subjects can only read a few simple words per minute and the average reading rate across all subjects is considerably lower. In addition, the resolution from these devices is typically much lower than that predicted by electrode spacing. One of the factors thought to reduce the quality of prosthetic vision is the methods utilized to stimulate retinal neurons. In the healthy retina, approximately a dozen different types of ganglion cells (retinal output neurons) each utilize different signaling patterns to communicate with the brain. For example, ON ganglion cells generate bursts of spiking at the onset of a light stimulus while OFF cells are silent or even reduce spiking (if a non-zero baseline rate is present). In contrast, stimulation from prosthetic electrodes is thought to create highly similar patterns of spiking in many ganglion cells, including both ON and OFF ganglion cells simultaneously and thus transmit a signal to the brain that is non-physiological. Recently, we tested a series of amplitude-modulated waveforms: 2000 pulse per second (PPS) constant-amplitude train with an occasional increase (or decrease) in amplitude, i.e. an increase from 50 uA (baseline) to 60 uA over the course of 150 ms followed by a return to 40 uA over the subsequent 150 ms. As expected, such waveforms elicited bursts of spikes in ON BT cells for each occurrence of the transient increase. Surprisingly however, responses in OFF BT cells were quite different and consisted of a reduction in spiking during the transient increase in stimulus amplitude. Thus the same stimulus waveform elicits an increase in spiking in ON brisk transient (BT) cells and a simultaneous decrease in spiking in OFF BT cells. This closely matches the physiological response pattern for these two cell types raising the possibility that this approach may have advantages over existing stimulation methods. Our goal in this proposal is to investigate these differences further by exploring their sensitivity to the parameters of stimulation with the goal of optimizing the underlying stimulation process. Additional preliminary experiments indicate that the response to 2000 PPS originates in the ganglion cell (i.e. it is not mediated by the synaptic circuitry). Therefore, we hypothesize that the response differences arise from intrinsic differences across ganglion cell types probably differences within the axon initial segment (AIS). Therefore, we will study the AIS differences across types in order to develop accurate computational models that can be used to understand and hopefully further enhance the response differences. Finally, we will also study how both responses as well as the underlying biophysical features change as the retina degenerates.
描述(由申请人提供):视网膜假体致力于帮助那些因黄斑变性和色素性视网膜炎等外视网膜疾病而失明的人恢复视力。 近年来,已经取得了相当大的进展,有报道称以前失明的受试者能够识别家居物品,以有限的方式在不熟悉的风景中导航,甚至阅读。 然而,尽管取得了这些进展,引发视觉的整体质量仍然受到一定程度的限制。 例如,即使是最快的受试者每分钟也只能阅读几个简单的单词,并且所有受试者的平均阅读率要低得多。 此外,这些设备的分辨率通常远低于电极间距预测的分辨率。 人们认为降低假体视觉质量的因素之一是刺激视网膜神经元的方法。 在健康的视网膜中,大约有十几种不同类型的神经节细胞(视网膜输出神经元)各自利用不同的信号模式与大脑进行通信。 例如,ON 神经节细胞在光刺激开始时产生脉冲爆发,而 OFF 细胞则保持沉默,甚至减少脉冲(如果存在非零基线速率)。 相比之下,来自假体电极的刺激被认为会在许多神经节细胞中产生高度相似的尖峰模式,包括同时打开和关闭的神经节细胞,从而将非生理信号传输到大脑。 最近,我们测试了一系列调幅波形:每秒 2000 个脉冲 (PPS) 恒定幅度序列,幅度偶尔增加(或减少),即在整个过程中从 50 uA(基线)增加到 60 uA。 150 毫秒后,在接下来的 150 毫秒内返回到 40 uA。 正如预期的那样,每次出现瞬时增加时,此类波形都会在 ON BT 细胞中引发尖峰脉冲。 然而令人惊讶的是,OFF BT 细胞的反应截然不同,包括在刺激幅度短暂增加期间尖峰的减少。 因此,相同的刺激波形会引起 ON 轻快瞬态 (BT) 细胞中尖峰的增加,并同时引起 OFF BT 细胞中尖峰的减少。 这与这两种细胞类型的生理反应模式密切匹配,提高了这种方法比现有刺激方法具有优势的可能性。 我们在此提案中的目标是通过探索它们对刺激参数的敏感性来进一步研究这些差异,以优化潜在的刺激过程。 其他初步实验表明,对 2000 PPS 的反应源自神经节细胞(即,它不是由突触回路介导的)。 因此,我们假设反应差异源于神经节细胞类型之间的内在差异,可能是轴突初始段(AIS)内的差异。 因此,我们将研究不同类型的 AIS 差异,以开发准确的计算模型,用于理解并希望进一步增强响应差异。 最后,我们还将研究随着视网膜退化,反应以及潜在的生物物理特征如何变化。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Network-mediated responses of ON ganglion cells to electric stimulation become less consistent across trials during retinal degeneration.
在视网膜变性期间,ON神经节细胞对电刺激的网络介导反应在各个试验中变得不太一致。
- DOI:
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:Jae;Fried, Shelley I;Maesoon Im
- 通讯作者:Maesoon Im
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shelley Fried其他文献
Shelley Fried的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shelley Fried', 18)}}的其他基金
Functional analysis of an LGN-based visual prosthesis
基于 LGN 的视觉假体的功能分析
- 批准号:
10582766 - 财政年份:2023
- 资助金额:
$ 34.18万 - 项目类别:
Investigating the Response of CNS Neurons to Electric and Magnetic Stimulation
研究中枢神经系统神经元对电和磁刺激的反应
- 批准号:
10673590 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别:
Optimization of micro-coil arrays for precise stimulation of visual cortex
优化微线圈阵列以精确刺激视觉皮层
- 批准号:
10362524 - 财政年份:2018
- 资助金额:
$ 34.18万 - 项目类别:
HRS targeting of ON and OFF ganglion cells
HRS 靶向 ON 和 OFF 神经节细胞
- 批准号:
8561456 - 财政年份:2013
- 资助金额:
$ 34.18万 - 项目类别:
HRS targeting of ON and OFF ganglion cells
HRS 靶向 ON 和 OFF 神经节细胞
- 批准号:
8906871 - 财政年份:2013
- 资助金额:
$ 34.18万 - 项目类别:
Informing the Sub-Retinal Approach to Stimualation of the Retina.
告知视网膜下刺激视网膜的方法。
- 批准号:
8926963 - 财政年份:2011
- 资助金额:
$ 34.18万 - 项目类别:
Informing the Sub-Retinal Approach to Stimualation of the Retina.
告知视网膜下刺激视网膜的方法。
- 批准号:
8240901 - 财政年份:2011
- 资助金额:
$ 34.18万 - 项目类别:
Informing the Sub-Retinal Approach to Stimualation of the Retina.
告知视网膜下刺激视网膜的方法。
- 批准号:
8083729 - 财政年份:2011
- 资助金额:
$ 34.18万 - 项目类别:
The mechanism by which electric stimulation activates retinal neurons
电刺激激活视网膜神经元的机制
- 批准号:
8204994 - 财政年份:2010
- 资助金额:
$ 34.18万 - 项目类别:
相似国自然基金
施旺细胞-神经元乳酸代谢稳态通过蛋白质乳酸化调控轴突再生的作用研究
- 批准号:32300648
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
- 批准号:82360337
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
轴突CD82调控星形胶质细胞TGF-β2/Smads信号通路改善青光眼视盘结构重塑的作用及机制探究
- 批准号:82301200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异丙酚促进STX3/PTEN介导DG-Glu能神经元轴突发生提高发育脑认知功能的机制研究
- 批准号:82301354
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
帕金森病轴突损伤中组蛋白乳酸化的作用及机制研究
- 批准号:82301604
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Retinal Ganglion Cell Signaling Regulated By Intrinsic Reactive Oxygen Species
视网膜神经节细胞信号传导受内在活性氧的调节
- 批准号:
10588039 - 财政年份:2023
- 资助金额:
$ 34.18万 - 项目类别:
Reexamining the Role of Dendrites in Neuronal Function
重新审视树突在神经元功能中的作用
- 批准号:
10721626 - 财政年份:2023
- 资助金额:
$ 34.18万 - 项目类别:
CRCNS: Understanding Single-Neuron Computation Using Nonlinear Model Optimization
CRCNS:使用非线性模型优化理解单神经元计算
- 批准号:
10668533 - 财政年份:2022
- 资助金额:
$ 34.18万 - 项目类别:
Ultrasonic modulation of cellular electrical signaling
细胞电信号的超声波调制
- 批准号:
10540394 - 财政年份:2022
- 资助金额:
$ 34.18万 - 项目类别:
Novel molecular mediators for activity-dependent myelination
活性依赖性髓鞘形成的新型分子介质
- 批准号:
10622530 - 财政年份:2022
- 资助金额:
$ 34.18万 - 项目类别: