Next-Generation Parenteral Drug Delivery Systems for Controlling Pharmacokinetics

用于控制药代动力学的下一代肠外给药系统

基本信息

  • 批准号:
    10890222
  • 负责人:
  • 金额:
    $ 7.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Every day, an estimated 3.9 billion people take medication to treat acute or chronic conditions. However, despite the enormous utility of current pharmaceuticals, they are limited by several factors that prevent their more effective and expanded use. Ideally, drugs would reach the desired concentration at the site of action for the duration that the therapy is required. In practice, this is difficult because the body is constantly metabolizing and excreting drugs, which necessitates re-administration. Depending on a drug’s therapeutic window and biological half-life, frequent administration may be required, which lowers patients’ adherence to their dosing regimens. This issue is pervasive with non-adherence rates as high as 50% for chronic diseases, leading to increased morbidity and mortality and as much as $290 billion in added healthcare costs each year in the U.S. alone. The field of pharmaceutics has developed formulation methods that reduce administration frequency, including injectable controlled-release systems composed of drug embedded in biodegradable materials. Unfortunately, current clinically-approved systems are limited in both the types of molecules that they can deliver and the drug release kinetics they can achieve. This proposal seeks to develop parenteral drug delivery strategies that enhance safety and efficacy, improve patient adherence, and enable the sustained release of biological drugs. We hypothesize that emerging nanofabrication methods (e.g. multi-photon 3D printing) can be used to control the structure—and thus behavior—of surface-eroding particles containing drug. Because the degradation of these hydrophobic materials is confined to the surface, drug distributed homogeneously throughout their volume will be released at a rate proportional to their erosion rate and exposed surface area. Using these methods, we can model and rationally design microparticle structures that release drug at predictable, geometrically-defined rates. Although this concept could be applied to achieve a wide array of release kinetics, we are most interested in attaining zero-order release kinetics, which are desirable for most diseases, and sequential release, which may be useful for dynamic conditions. Further, because surface eroding materials exclude water, their interior microenvironment will remain dry and neutral, thus promoting the stability of encapsulated biologics at 37°C. The features of surface-eroding microparticles run in stark contrast with existing FDA-approved microparticles composed of bulk-degrading polymers that absorb water and produce acidic degradation products, which makes it impossible to predict release kinetics a priori, contributes to the degradation of encapsulated biologics, and prevents sequential release. The strategies we propose are only now possible due to the convergence of advances in manufacturing and chemistry that allow us to exploit structure-function relationships at a scale small enough to retain microparticle injectability. If successful, this approach has the ability to fundamentally change how drugs are administered and improve patient outcomes across all of medicine.
项目摘要/摘要 每天,估计有39亿人服用药物治疗急性或慢性病。但是,需求 当前药物的巨大效用,它们受到几个因素的限制,这些因素可以防止其更多 有效和扩展的使用。理想情况下,药物将达到所需的浓度 需要治疗的持续时间。实际上,这很困难,因为身体不断代谢,并且 排泄药物,必要的重新管理。取决于药物的治疗窗口和生物学 可能需要半衰期,通常需要给药,这降低了患者对剂量方案的依从性。 这个问题普遍存在,慢性疾病的不遵守率高达50%,导致增加 发病率和死亡率,仅在美国,每年每年增加2900亿美元的医疗保健费用。这 药物领域已开发出制定方法,以降低给药频率,包括 由可生物降解材料嵌入的药物组成的可注射控制释放系统。很遗憾, 当前临床批准的系统在它们可以输送的两种类型的类型中都受到限制 释放他们可以实现的动力学。该建议旨在制定父母的药物输送策略 提高安全性和效率,提高患者的依从性,并能够持续释放生物药物。 我们假设新兴的纳米制作方法(例如多光子3D打印)可用于控制 含有药物的表面磨练的颗粒的结构以及因此行为。因为 这些疏水材料局限于表​​面,在整个体积中均匀分布的药物 将以与其侵蚀率和暴露表面积成正比的速度释放。使用这些方法,我们 可以建模和合理设计的微粒结构,以可预测的几何定义释放药物 速率。尽管可以应用此概念来实现各种各样的发行动力学,但我们最感兴趣 在获得零级释放动力学时,对于大多数疾病都是理想的,以及顺序释放, 可能对动态条件有用。此外,由于表面侵蚀材料排除了水,因此内部 微环境将保持干燥和中性,从而在37°C下促进了封装的生物制剂的稳定性。 与现有的FDA批准的微粒形成鲜明对比的是表面修饰的微粒的特征 由吸收水并产生酸性降解产物的散装聚合物组成 不可能先验地预测动力学,导致封装生物制剂的降解和 防止顺序释放。我们提出的策略直到现在才有可能 制造和化学的进步,使我们能够以较小的规模利用结构功能关系 足以保留微粒注射性。如果成功,这种方法有能力从根本上改变 如何给药并改善所有药物的患者预后。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems.
克服可生物降解药物输送系统中蛋白质和肽不稳定性的策略。
  • DOI:
    10.1016/j.addr.2023.114904
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    16.1
  • 作者:
    Shi,Miusi;McHugh,KevinJ
  • 通讯作者:
    McHugh,KevinJ
Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems.
  • DOI:
    10.1038/s41573-023-00670-0
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    120.1
  • 作者:
    Baryakova, Tsvetelina H.;Pogostin, Brett H.;Langer, Robert;McHugh, Kevin J.
  • 通讯作者:
    McHugh, Kevin J.
共 2 条
  • 1
前往

Kevin James McHugh的其他基金

Research Supplement to Promote Diversity: Carlos Torres (R03EB031495 Parent Award)
促进多样性的研究补充:Carlos Torres(R03EB031495 家长奖)
  • 批准号:
    10592146
    10592146
  • 财政年份:
    2022
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Research Supplement to Promote Diversity: Belvi Bwela (R03EB031495 Parent Award)
促进多样性的研究补充:Belvi Bwela(R03EB031495 家长奖)
  • 批准号:
    10592142
    10592142
  • 财政年份:
    2022
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Electrosprayed Core-Shell Microparticles as a Pulsatile Vaccine Delivery Platform
电喷雾核壳微粒作为脉冲疫苗输送平台
  • 批准号:
    10195135
    10195135
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Solvent Evaporator Equipment Supplement to R35GM143101
R35GM143101 溶剂蒸发器设备补充
  • 批准号:
    10799251
    10799251
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Next-Generation Parenteral Drug Delivery Systems for Controlling Pharmacokinetics
用于控制药代动力学的下一代肠外给药系统
  • 批准号:
    10277139
    10277139
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Electrosprayed Core-Shell Microparticles as a Pulsatile Vaccine Delivery Platform
电喷雾核壳微粒作为脉冲疫苗输送平台
  • 批准号:
    10372138
    10372138
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Research Supplement to Promote Diversity: Mei-Li Laracuente (1R35GM143101 Parent Award)
促进多样性的研究补充:Mei-Li Laracuente(1R35GM143101家长奖)
  • 批准号:
    10631614
    10631614
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Next-Generation Parenteral Drug Delivery Systems for Controlling Pharmacokinetics
用于控制药代动力学的下一代肠外给药系统
  • 批准号:
    10488240
    10488240
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Next-Generation Parenteral Drug Delivery Systems for Controlling Pharmacokinetics
用于控制药代动力学的下一代肠外给药系统
  • 批准号:
    10667652
    10667652
  • 财政年份:
    2021
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Biomaterial Strategies for Modulating the Immune Response
调节免疫反应的生物材料策略
  • 批准号:
    10232052
    10232052
  • 财政年份:
    2020
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:

相似国自然基金

阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
  • 批准号:
    82302281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
  • 批准号:
    22304039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
  • 批准号:
    82300173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
  • 批准号:
    82360957
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
  • 批准号:
    10629531
    10629531
  • 财政年份:
    2023
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
  • 批准号:
    10722857
    10722857
  • 财政年份:
    2023
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
  • 批准号:
    10734465
    10734465
  • 财政年份:
    2023
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
  • 批准号:
    10654014
    10654014
  • 财政年份:
    2022
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
  • 批准号:
    10508956
    10508956
  • 财政年份:
    2022
  • 资助金额:
    $ 7.35万
    $ 7.35万
  • 项目类别: