Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
基本信息
- 批准号:10889837
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-23 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptor Signaling ProteinAddressAdvanced DevelopmentAffectAffinityAmino Acid SubstitutionAntibodiesArchitectureBindingBiological AssayBiological ModelsBiologyCell-Matrix JunctionCellsChimeric ProteinsClinical TrialsComplexDataDatabasesDevelopmentDevicesDrug Delivery SystemsEngineeringEquilibriumEventExhibitsFamilyGene DeliveryGenome engineeringGoalsHIVHeadHereditary DiseaseHomingHuman bodyImmunoglobulin FragmentsInfectionKnowledgeLaboratoriesLibrariesLiftingMalignant NeoplasmsMapsMeasles virusMembraneMembrane FusionMembrane Fusion ActivityMembrane ProteinsMethodologyMolecularMolecular ConformationMumpsMutagenesisMutationParainfluenzaParamyxovirusPeptide HydrolasesPharmaceutical PreparationsPhenotypePlayProcessPropertyProtein ChemistryProtein EngineeringProteinsReagentReceptor CellScanningSiteStructural ProteinStructureSurfaceSystemTechnologyTissuesViralViral PhysiologyViral ProteinsVirusVirus DiseasesVirus IntegrationVirus ReceptorsVisualizationantibody engineeringanticancer treatmentcell typedelivery vehicledesignfitnessgene delivery systemgenetic selectiongenome editinghigh rewardhigh riskhuman diseaseimprovedinsightmembermolecular recognitionmutation screeningnew technologynovel strategiesparainfluenza viruspressureprotein structurereceptorreceptor bindingside effectstemtargeted deliverytoolusability
项目摘要
Summary
In the absence of selective delivery, many promising drugs do not reach the targeted cells, but rather
cause toxic side effects. Many viruses, on the other hand, have mastered the art of identifying
microenvironmental clues and selectively find and infect a specific cell. For instance, they depend on “local”
proteases, sometimes two, to activate their fusion proteins. To develop better targeting devices, we aim to
dissect molecular properties and functions embedded in viral surface proteins, specifically focusing on
receptor interactions, stability, and fusion triggering (Aim I) for which we will employ surface display
and infectivity assays. We will focus on the viral surface machinery of the paramyxoviruses (PMVs), specifically
Parainfluenza virus 5 (PIV5). Most PMVs have a division of labor keeping host receptor binding and cell entry
apart as two separate functions encoded into two molecules: one tetrameric protein responsible for molecular
recognition and a trimeric fusion protein responsible for the merging of host and viral membranes. This
compartmentalization makes the PMVs an excellent model system for repurposing as the fusion protein can
remain untouched, while the recognition process can be re-engineered.
We will take advantage of deep mutational scanning which allows us to evaluate all possible amino acid
substitutions for any given genetic selection. By acquiring differential fitness landscapes for each of the
aforementioned molecular properties, we will be able to address interesting questions about the biology of
viruses, such as mutational tolerance in context of their protein chemistry. Importantly, fitness landscapes will
have an immediate impact on engineering of delivery devices as they will provide rough blueprints of the
molecular architecture of these complex machineries. We will use obtained sequence-function-structure maps
for the development of a new, adaptable targeted delivery platform that will integrate viral surface
machinery with antibody fragments (Aim II). The key point will be to develop an adapter molecule that
integrates the antibody fragment while maintaining all regulatory function that the viral recognition machinery
normally exhibits, which involves control of conformational changes. Previous efforts have not succeeded in
developing an efficient, general delivery system. Here, we will obtain and leverage an invaluable database of
virus protein structures together with our newly obtained sequence-function knowledge, which we combine with
new technology – protein design – to advance this seemingly simple but ambitious engineering project.
We aim to provide a generally applicable platform for a new targeting machinery that incorporates these
molecular mechanisms while also taking advantage of the vast amount of identified and engineered antibodies.
Through combining parts of the viral infection machinery with antibody fragments and adapter proteins, we
anticipate that we will be able to significantly advance the development of drug and gene delivery systems and
thereby also provide new and much needed precision targeting technology for genome engineering.
概括
在缺乏选择性递送的情况下,许多有前途的药物无法到达靶细胞,而是
另一方面,许多病毒已经掌握了识别技术。
例如,它们依赖于“局部”。
蛋白酶(有时是两种)来激活其融合蛋白。为了开发更好的靶向装置,我们的目标是
剖析病毒表面蛋白中嵌入的分子特性和功能,特别关注
受体相互作用、稳定性和融合触发(目标 I),我们将采用表面显示
我们将重点关注副粘病毒(PMV)的病毒表面机制。
大多数 PMV 都有分工,以保持宿主受体结合和细胞进入。
分开作为两个独立的功能编码成两个分子:一个四聚体蛋白质负责分子
识别和负责宿主和病毒膜融合的三聚体融合蛋白。
区室化使 PMV 成为重新利用的优秀模型系统,因为融合蛋白可以
保持不变,而识别过程可以重新设计。
我们将利用深度突变扫描来评估所有可能的氨基酸
通过获取每个基因的不同适应度景观来替代任何给定的基因选择。
讨论了分子特性,我们将能够解决有关生物学的有趣问题
病毒,例如其蛋白质化学背景下的突变耐受性,重要的是,适应性景观将会。
对输送设备的工程产生直接影响,因为它们将提供大致的蓝图
我们将使用获得的序列-功能-结构图来构建这些复杂机器的分子结构。
开发一种新的、适应性强的靶向递送平台,该平台将整合病毒表面
具有抗体片段的机器(目标 II)。关键点是开发一种接头分子
整合抗体片段,同时保持病毒识别机制的所有调节功能
通常表现出涉及构象变化的控制,以前的努力尚未成功。
在这里,我们将获得并利用一个宝贵的数据库。
病毒蛋白质结构以及我们新获得的序列功能知识,我们将其与
新技术——蛋白质设计——来推进这个看似简单但雄心勃勃的工程项目。
我们的目标是为新的靶向机制提供一个普遍适用的平台,其中包含这些
分子机制,同时还利用大量已识别和工程化的抗体。
通过将病毒感染机制的一部分与抗体片段和接头蛋白相结合,我们
预计我们将能够显着推进药物和基因传递系统的开发,
从而也为基因组工程提供了急需的新的精确靶向技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eva-Maria Strauch其他文献
Eva-Maria Strauch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eva-Maria Strauch', 18)}}的其他基金
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
- 批准号:
10527903 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
- 批准号:
10652635 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Design of Antivirals and Immunogens Targeting Paramyxoviruses
针对副粘病毒的抗病毒药物和免疫原的设计
- 批准号:
10399484 - 财政年份:2018
- 资助金额:
$ 19.44万 - 项目类别:
Design of Antivirals and Immunogens Targeting Paramyxoviruses
针对副粘病毒的抗病毒药物和免疫原的设计
- 批准号:
9912717 - 财政年份:2018
- 资助金额:
$ 19.44万 - 项目类别:
Design of Antivirals and Immunogens Targeting Paramyxoviruses
针对副粘病毒的抗病毒药物和免疫原的设计
- 批准号:
9746856 - 财政年份:2018
- 资助金额:
$ 19.44万 - 项目类别:
Design of Antivirals and Immunogens Targeting Paramyxoviruses
针对副粘病毒的抗病毒药物和免疫原的设计
- 批准号:
10889846 - 财政年份:2018
- 资助金额:
$ 19.44万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
- 批准号:
10527903 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Next Generation Autologous TIL Cancer Therapy: Development of GMP manufacturing process
下一代自体 TIL 癌症疗法:GMP 制造工艺的开发
- 批准号:
10685604 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
- 批准号:
10539146 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
- 批准号:
10652635 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
- 批准号:
10709540 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别: