Calcium homeostasis and cellular fitness in sepsis
脓毒症中的钙稳态和细胞适应性
基本信息
- 批准号:10892600
- 负责人:
- 金额:$ 56.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAmericanAnimalsAnxietyBiologicalBiological Response Modifier TherapyBiologyBrainCa(2+)-Calmodulin Dependent Protein KinaseCalciumCalcium SignalingCaringCell RespirationCell SurvivalCell physiologyCellsCessation of lifeChronic DiseaseChronic Obstructive Pulmonary DiseaseComplexCytoprotectionDevelopmentEquilibriumExhibitsFamily memberFunctional Magnetic Resonance ImagingFutureGenerationsHealthHeartHeart failureHippocampusHomeostasisHospitalizationHospitalsHumanImmuneImpaired cognitionInfectionInflammatoryKidneyKnowledgeLearningLifeLinkLiverLower respiratory tract structureLysosomesMediatingMembrane PotentialsMental disordersMessenger RNAMetabolismMitochondriaModelingMusMyocardial InfarctionOrganismPathway interactionsPatientsPhenotypeProductionRecoveryRecurrenceSamplingSepsisStressStrokeStructureSurvivorsTissuesTraumaWorkcalcium uniportercell injurycytokinediagnostic toolexperiencefear memoryfitnesshealinghospital readmissionimprovedin vivoinnovationintraperitonealmitochondrial membranemortalitymouse modelmulticatalytic endopeptidase complexneurocognitive disordernovelpreservationprotein degradationpsychologicresponseseptic patientsstoichiometrysystemic inflammatory responseuptakevasogenic edema
项目摘要
ABSTRACT
Two million Americans are hospitalized for sepsis each year, and 1 in 3 die. Those that survive, however,
are not cured. Neurocognitive disorders occur in up to 50%, and cognitive decline continues for up to 8 years.
Sepsis hospitalizations account for a higher proportion of unplanned readmissions than those for myocardial
infarction, heart failure, and COPD. Five-year mortality for sepsis survivors exceeds that for heart failure and
stroke. The mechanisms underlying this persistent loss of health remain to be defined. We hypothesize that
early during sepsis the mitochondrion is restructured as an adaptive mechanism to protect the cell against any
future environmental stress, such as recurrent sepsis. These structural changes impart lasting alterations to
the mitochondrial calcium (Ca2+) homeostasis and metabolism necessary to support a cellular phenotype,
which for a multicellular organism are poorly tolerated and underlie a persistent loss of health.
Our lab has spent nearly two decades studying sepsis to elucidate the Ca2+-dependent mechanisms that
regulate mitochondrial biology to balance Ca2+ homeostasis and ATP generation and preserve cellular health.
We have shown that early after sepsis, mitochondrial depolarization generates a Ca2+ signal. Members of the
family of Ca2+ /calmodulin-dependent protein kinases (CaMK) transduce these Ca2+ signals and work in
tandem to mediate adaptive changes in mitochondrial fission, mitophagy, and oxidative metabolism to lessen
cellular damage. More recently, we observed that sepsis restructures the mitochondrial calcium uniporter
(MCU) complex, imposing long-lasting changes to mitochondrial and cellular Ca2+ homeostasis and
metabolism that perturb cellular and tissue function across the entire organism. We propose that as a
‘learned’ response to sepsis, the cell restructures the MCU complex to counter the potential for Ca2+
overload with future insult; this imparts long-lasting alterations in Ca2+ homeostasis, oxidative
metabolism, and tissue phenotype. Using models of lower-respiratory tract and intraperitoneal infection and
correlative human samples, we propose the following aims:
Aim 1. To study in mice and humans how a restructured MCU complex alters Ca2+ homeostasis and
oxidative metabolism and thereby, the phenotype of each tissue comprising the organism.
Aim 2. To define the mechanisms of mitophagy and protein degradation through the lysosome and
proteasome as underlying causes of the persistent loss of MICU1 expression in murine models of
sepsis and in human sepsis survivors.
This new experimental work will provide foundational knowledge as to how the mechanisms governing
mitochondrial Ca2+ and metabolism are restructured during sepsis to underlie a persistent loss of cellular
phenotype that leads to a progressive loss of health and shortened survival.
抽象的
每年有 200 万美国人因败血症住院,然而,三分之一的幸存者死亡。
高达 50% 的人会出现神经认知障碍,并且认知能力下降会持续长达 8 年。
脓毒症住院占计划外再入院的比例高于心肌病住院
脓毒症幸存者的五年死亡率超过了心力衰竭和慢性阻塞性肺病。
这种持续性健康损失的机制仍有待确定。
在脓毒症早期,线粒体被重组为一种适应性机制,以保护细胞免受任何影响
未来的环境压力,例如复发性脓毒症,这些结构变化会给身体带来持久的改变。
支持细胞表型所需的线粒体钙 (Ca2+) 稳态和代谢,
对于多细胞生物体来说,这种现象的耐受性很差,并且是持续丧失健康的原因。
我们的实验室花了近二十年的时间研究脓毒症,以阐明 Ca2+ 依赖性机制
调节线粒体生物学以平衡 Ca2+ 稳态和 ATP 生成并保持细胞健康。
我们已经证明,败血症后早期,线粒体去极化会产生 Ca2+ 信号。
Ca2+/钙调蛋白依赖性蛋白激酶 (CaMK) 家族转导这些 Ca2+ 信号并在
串联介导线粒体裂变、线粒体自噬和氧化代谢的适应性变化,以减少
最近,我们观察到脓毒症会重组线粒体钙单向转运蛋白。
(MCU) 复杂,对线粒体和细胞 Ca2+ 稳态产生持久的变化,
我们认为,新陈代谢会扰乱整个有机体的细胞和组织功能。
对败血症的“习得”反应,细胞重组 MCU 复合体以对抗 Ca2+ 的潜力
未来损伤造成的超负荷;这会导致 Ca2+ 稳态、氧化的持久改变
使用下呼吸道和腹膜内感染模型。
相关的人类样本,我们提出以下目标:
目标 1. 在小鼠和人类身上研究重组的 MCU 复合物如何改变 Ca2+ 稳态和
氧化代谢,从而构成生物体的每个组织的表型。
目标 2. 确定通过溶酶体和线粒体自噬和蛋白质降解的机制
蛋白酶体是小鼠模型中 MICU1 表达持续缺失的根本原因
败血症和人类败血症幸存者。
这项新的实验工作将提供有关机制如何控制的基础知识
脓毒症期间线粒体 Ca2+ 和代谢发生重组,导致细胞功能持续丧失
导致健康逐渐丧失和生存缩短的表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW Randall ROSENGART其他文献
MATTHEW Randall ROSENGART的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW Randall ROSENGART', 18)}}的其他基金
The role of circadian clock proteins in innate and adaptive immunity
生物钟蛋白在先天性和适应性免疫中的作用
- 批准号:
10582781 - 财政年份:2022
- 资助金额:
$ 56.29万 - 项目类别:
The role of circadian clock proteins in innate and adaptive immunity
生物钟蛋白在先天性和适应性免疫中的作用
- 批准号:
10892546 - 财政年份:2022
- 资助金额:
$ 56.29万 - 项目类别:
CaMK: central regulators of the inflammatory response to surgical sepsis
CaMK:手术败血症炎症反应的中央调节因子
- 批准号:
8516525 - 财政年份:2009
- 资助金额:
$ 56.29万 - 项目类别:
CaMK: Central Regulators of the response to Surgical Sepsis
CaMK:手术败血症反应的中央监管者
- 批准号:
9043106 - 财政年份:2009
- 资助金额:
$ 56.29万 - 项目类别:
CaMK: Central Regulators of the response to Surgical Sepsis
CaMK:手术败血症反应的中央监管者
- 批准号:
9407788 - 财政年份:2009
- 资助金额:
$ 56.29万 - 项目类别:
CaMK: central regulators of the inflammatory response to surgical sepsis
CaMK:手术败血症炎症反应的中央调节因子
- 批准号:
8308620 - 财政年份:2009
- 资助金额:
$ 56.29万 - 项目类别:
CaMK: central regulators of the inflammatory response to surgical sepsis
CaMK:手术败血症炎症反应的中央调节因子
- 批准号:
7906839 - 财政年份:2009
- 资助金额:
$ 56.29万 - 项目类别:
CaMK: central regulators of the inflammatory response to surgical sepsis
CaMK:手术败血症炎症反应的中央调节因子
- 批准号:
8114205 - 财政年份:2009
- 资助金额:
$ 56.29万 - 项目类别:
相似海外基金
Mitochondrial regulation of nociceptor function
伤害感受器功能的线粒体调节
- 批准号:
10644865 - 财政年份:2023
- 资助金额:
$ 56.29万 - 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 56.29万 - 项目类别:
The lipid hydrolase NAAA as a target for non-addictive analgesic medications
脂质水解酶 NAAA 作为非成瘾性镇痛药物的靶标
- 批准号:
10584428 - 财政年份:2023
- 资助金额:
$ 56.29万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 56.29万 - 项目类别: