Systematic Assessment of Combinatorial Transcription Factor Activity
组合转录因子活性的系统评估
基本信息
- 批准号:10897439
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsBehaviorBenchmarkingBiological AssayBiomedical ResearchCardiovascular systemCatalogsCellsCharacteristicsCommunitiesCommunity NetworksComplexComputer AnalysisConsensusDataDatabasesEmbryoEngineered GeneEngineeringFibroblastsGene ExpressionGenesGenetic TranscriptionGenomeGerm CellsGerm LayersGoalsHealthHeartHumanKnowledgeLibrariesLinear RegressionsMapsMathematicsMeasurementMeasuresMissionModelingMolecularMusPerformancePlantsPublic HealthPublishingRegenerative MedicineResearchResourcesStructureTestingTimeTranscription Factor 3United States National Institutes of HealthWorkcell agecell typecellular engineeringcombinatorialcomputer frameworkfield studyflexibilitygene regulatory networkimprovedin vivoinnovationinsightknowledgebasenoveloverexpressionprogramssingle-cell RNA sequencingtooltranscription factortranscription regulatory networktranscriptional reprogrammingtranscriptometranscriptomics
项目摘要
PROJECT SUMMARY
Despite vast catalogs of transcriptomes, our understanding of transcriptional state remains mostly descriptive.
In this proposal, we seek to advance the field towards a predictive understanding of cell state by addressing the
fundamental gap in knowledge: what are the genes and regulatory networks that drive a cell’s transcriptional
state? This knowledge will be critical to understand the molecular basis of cell state and to manipulate cell state
for biomedical applications. Transcription factors (TFs) cooperatively drive gene regulatory networks (GRNs) to
establish transcriptional states. Notably, forced induction of TFs can reprogram gene expression states by sup-
planting existing GRNs. Thus, TFs and GRNs are the building blocks to a predictive understanding of a cell’s
transcriptional state. One key challenge is that, in general, the relationship between TFs and GRNs is not known
and is difficult to accurately predict. This challenge arises from several current problems: a lack of ground truth
GRNs derived from experimental TF perturbation, a reliance on static transcriptomic databases to infer GRNs
for TF cocktail prediction, and the difficulty of predicting non-linear TF behaviors. Until we can understand how
TFs cooperatively influence GRNs, our ability to predict the TF drivers of cell state will remain limited. Our long-
term goal is to understand the molecular basis of transcriptional state for applications in cellular engineering.
Towards this goal, the objective of this proposal is to generate a unique resource to directly measure GRNs for
simple combinations of TFs, and to use this functional knowledgebase to predict and benchmark complex TF
cocktails for transcriptional reprogramming. We hypothesize that experimentally-derived GRNs will improve the
performance of predicted TF cocktails for transcriptional reprogramming. Our rationale is that these studies will
1) provide a novel and urgently needed resource of TF functional activity and experimentally-derived GRNs for
the community, 2) provide insights into the molecular drivers of transcriptional state, and 3) identify TFs with
potential to engineer gene expression states for biomedical research. We propose the following specific aims:
(Aim 1) Measure the combinatorial activities of transcription factors; (Aim 2) Improve computational frameworks
to predict TF cocktails for transcriptional reprogramming; (Aim 3) Generalize TF-driven GRNs across initial cell
contexts and benchmark predictions. This proposal is innovative because it will use our single-cell platform Re-
program-Seq 2.0 for high-throughput transcriptional reprogramming to generate a unique resource of functional
activities for TFs and GRNs. We expect this resource to propel new research horizons. This proposal is signifi-
cant because it will expand our understanding of genome function by quantifying combinatorial TF activity, ex-
perimentally deriving GRNs, and providing new tools to engineer gene expression states.
项目概要
尽管转录组目录庞大,但我们对转录状态的理解仍然主要是描述性的。
在本提案中,我们寻求通过解决以下问题来推进该领域对细胞状态的预测性理解:
知识上的根本差距:驱动细胞转录的基因和调控网络是什么?
这些知识对于理解细胞状态的分子基础和操纵细胞状态至关重要
用于生物医学应用。转录因子(TF)协同驱动基因调控网络(GRN)
值得注意的是,转录因子的强制诱导可以通过支持来重新编程基因表达状态。
因此,TF 和 GRN 是预测性理解细胞的基石。
转录状态的一个关键挑战是,一般来说,TF 和 GRN 之间的关系尚不清楚。
这一挑战源于当前的几个问题:缺乏基本事实。
GRN 源自实验 TF 扰动,依赖静态转录组数据库来推断 GRN
TF 鸡尾酒预测,以及预测非线性 TF 行为的难度,直到我们能够理解如何进行。
TF 协同影响 GRN,我们预测细胞状态 TF 驱动因素的能力仍然有限。
术语目标是了解转录状态的分子基础,以便在细胞工程中应用。
为了实现这一目标,本提案的目标是生成一种独特的资源来直接测量 GRN
TF 的简单组合,并使用此功能知识库来预测和基准复杂的 TF
我们勇敢地说,实验衍生的 GRN 将改善转录重编程。
我们的理由是,这些研究将预测 TF 鸡尾酒在转录重编程中的性能。
1)为 TF 功能活动和实验衍生的 GRN 提供新颖且急需的资源
社区,2) 提供对转录状态分子驱动因素的见解,以及 3) 识别转录因子
我们提出了以下具体目标:
(目标 1)测量转录因子的组合活性;(目标 2)改进计算框架;
预测用于转录重编程的 TF 混合物;(目标 3)在初始细胞中推广 TF 驱动的 GRN
该提案具有创新性,因为它将使用我们的单细胞平台 Re-
program-Seq 2.0,用于高通量转录重编程,生成独特的功能资源
我们期望这一资源能够推动新的研究视野。
不能,因为它将通过量化组合 TF 活性来扩展我们对基因组功能的理解,例如
实验性地衍生 GRN,并提供设计基因表达状态的新工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Chung Hon其他文献
Gary Chung Hon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Chung Hon', 18)}}的其他基金
Multiscale functional characterization of genomic variation in human developmental disorders
人类发育障碍基因组变异的多尺度功能表征
- 批准号:
10296634 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Multiscale functional characterization of genomic variation in human developmental disorders
人类发育障碍基因组变异的多尺度功能表征
- 批准号:
10689051 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Multiscale functional characterization of genomic variation in human developmental disorders
人类发育障碍基因组变异的多尺度功能表征
- 批准号:
10473897 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Combinatorial Biology of Gene Regulation for Cellular Engineering
细胞工程基因调控的组合生物学
- 批准号:
10372278 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Combinatorial Biology of Gene Regulation for Cellular Engineering
细胞工程基因调控的组合生物学
- 批准号:
9349247 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: