Integrative modelling of single-cell data to elucidate the genetic architecture of complex disease
单细胞数据的综合建模以阐明复杂疾病的遗传结构
基本信息
- 批准号:10889304
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AllelesBenchmarkingBiologicalBiologyCellsCellular biologyChromatinCollaborationsCollectionCommunitiesComplexComputer softwareDataData SetDiseaseEpigenetic ProcessGene ExpressionGenesGenetic TranscriptionGenomeHeritabilityImmuneIndividualMapsMeasurementModalityModelingMolecularMultiomic DataNaturePhenotypePopulationPrincipal Component AnalysisProcessPublicationsPublishingQuantitative Trait LociRegulatory ElementResearchResolutionStatistical ModelsStudy modelsTissuesTranscription ProcessUntranslated RNAVariantWorkcausal variantcell typedata integrationeffective interventionepigenomeepigenomicsgenetic architecturegenome wide association studyimprovedmultiple omicsneuropsychiatrynovelnovel strategiessingle cell sequencingsingle-cell RNA sequencingtooltraittranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Leveraging Genome Wide Association Studies (GWAS) to understand disease has proven challenging, as the
underlying biological mechanisms are often poorly captured by bulk tissues. Recent advances in single-cell
sequencing have led to a torrent of data across multiple modalities, contexts, and individuals, which provide an
unprecedented opportunity to understand disease biology at high resolution. We hypothesize that the fine-
scale cellular contexts captured by single-cell data will be effective at explaining disease heritability and fine-
mapping disease mechanisms. However, current approaches to integrate single-cell data with GWAS largely
rely on off-the-shelf approaches developed for bulk sequencing, which obscure the rich phenotypic diversity
present in individual cells within and across canonical cell types. The sparse and highly variable nature of
single-cell data has additionally posed challenges for robustly identifying single-cell quantitative trait loci (QTL).
Single-cell data continues to increase in size and complexity, emphasizing the need for scalable integrative
modeling. Here, we propose a 5 year research plan to develop novel approaches for integrating single-cell
data with GWAS by modeling complex cellular phenotypes not captured by existing bulk approaches. Our
proposal will identify novel disease-relevant cell states; leverage multiple single-cell modalities to fine-map
disease variants and their target genes; and discover novel single-cell QTLs associated with disease. Our
specific aims are: Aim 1: Leveraging single-cell epigenetic data to identify heritable components of disease;
Aim 2: Leveraging single-cell data to fine-map disease variants and their mechanisms; Aim 3: Defining the
regulatory effects of disease variants using population-scale scRNA-seq. While our proposed approaches are
broadly applicable to common diseases, we will benchmark them on immune-related traits and
neuropsychiatric traits which we have studied extensively with bulk datasets in published work and where we
have now aggregated a large collection of relevant single-cell datasets. Our collaboration has multiple
strengths: our focus on functional data integration across multiple single-cell modalities; our broad statistical
and computational expertise; and our extensive, data-driven publication record on common disease.
项目概要/摘要
事实证明,利用全基因组关联研究 (GWAS) 来了解疾病具有挑战性,因为
大量组织通常很难捕获潜在的生物学机制。单细胞研究的最新进展
测序产生了跨多种模式、背景和个人的大量数据,这提供了
以高分辨率了解疾病生物学的前所未有的机会。我们假设罚款
由单细胞数据捕获的规模细胞环境将有效地解释疾病的遗传性和精细化
绘制疾病机制。然而,目前将单细胞数据与 GWAS 集成的方法很大程度上
依赖于为批量测序开发的现成方法,这掩盖了丰富的表型多样性
存在于典型细胞类型内部和之间的单个细胞中。稀疏且高度可变的性质
单细胞数据还对稳健识别单细胞数量性状基因座(QTL)提出了挑战。
单细胞数据的规模和复杂性不断增加,强调了对可扩展集成的需求
造型。在这里,我们提出了一项为期 5 年的研究计划,以开发整合单细胞的新方法
通过对现有批量方法无法捕获的复杂细胞表型进行建模,利用 GWAS 来获取数据。我们的
该提案将确定新的与疾病相关的细胞状态;利用多种单细胞模式进行精细绘制
疾病变异及其靶基因;并发现与疾病相关的新型单细胞 QTL。我们的
具体目标是: 目标 1:利用单细胞表观遗传数据来识别疾病的遗传成分;
目标 2:利用单细胞数据精细绘制疾病变异及其机制;目标 3:定义
使用群体规模的 scRNA-seq 来调节疾病变异的效应。虽然我们提出的方法是
广泛适用于常见疾病,我们将根据免疫相关特征对它们进行基准测试
我们在已发表的作品中使用大量数据集广泛研究了神经精神特征
现在已经聚集了大量相关的单细胞数据集。我们的合作有多个
优势:我们专注于跨多种单细胞模式的功能数据集成;我们广泛的统计
和计算专业知识;以及我们关于常见疾病的广泛的、数据驱动的出版记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER GUSEV其他文献
ALEXANDER GUSEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER GUSEV', 18)}}的其他基金
Characterizing non-coding somatic and germline variant interactions in ovarian cancer
卵巢癌中非编码体细胞和种系变异相互作用的特征
- 批准号:
10405651 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
- 批准号:
9516467 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
- 批准号:
10402412 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
(PQ3) A functional genomic approach to identification and interpretation of germline-tumor genetic interactions
(PQ3) 识别和解释种系-肿瘤遗传相互作用的功能基因组方法
- 批准号:
10160851 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Fine-mapping heritability at known disease loci with correlated markers
使用相关标记精细绘制已知疾病位点的遗传力
- 批准号:
8525990 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Fine-mapping heritability at known disease loci with correlated markers
使用相关标记精细绘制已知疾病位点的遗传力
- 批准号:
8651765 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
区域性农业干旱、强风、低温气象指数保险产品设计与应用研究
- 批准号:71173139
- 批准年份:2011
- 资助金额:43.0 万元
- 项目类别:面上项目
基于标杆管理的县级疾病预防控制机构绩效诊断与改进的关键技术研究
- 批准号:71003025
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
宏观分层虚拟标杆管理理论与方法创新研究
- 批准号:70963003
- 批准年份:2009
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Inherited and de novo genetic variants relevant to familial, recurrent and sporadic stillbirth
与家族性、复发性和散发性死产相关的遗传性和从头遗传变异
- 批准号:
10719376 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Genome sequencing for evaluating the efficacy, specificity, and safety of human genome editing
用于评估人类基因组编辑的有效性、特异性和安全性的基因组测序
- 批准号:
10667893 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
An early-intervention gene-editing therapeutic for Pulmonary Arterial Hypertension
肺动脉高压的早期干预基因编辑疗法
- 批准号:
10603715 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: