Development and Persistence of Tissue-Level Musculoskeletal Deformity Following Brachial Plexus Birth Injury
臂丛神经出生损伤后组织水平肌肉骨骼畸形的发展和持续
基本信息
- 批准号:10838188
- 负责人:
- 金额:$ 7.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimalsArticular Range of MotionBiologicalBirth traumaBone DensityBone InjuryBrachial plexus structureCharacteristicsClinical TreatmentComputer ModelsComputer SimulationContractureDataDeformityDevelopmentElementsEnvironmentGaitGrowthImageImpairmentInjuryInterventionJoint structure of shoulder regionLimb DevelopmentLimb structureLocationMechanicsMethodsModelingMorphologyMotionMuscleMusculoskeletalParalysedParentsPatternPropertyRattusResearchRunningStructureSurgical DisarticulationTimeTissuesUpper ExtremityWalkingWorkarmboneexperiencehumerusinsightmicroCTneuromuscularparent grantplacebo grouppostnatal periodresponsescapulaspatiotemporaltimelinetissue stress
项目摘要
Project Summary
Brachial Plexus Birth Injury (BPBI) is a neuromuscular injury that causes lifelong arm impairments and
deformities in the glenohumeral joint which restricts mobility of the upper limb. Little is known about the
progression of bone and muscle growth in the postnatal period following BPBI. The parent grant explores key
drivers of deformity progression including the timeline of development and resultant functional effects through a
rat model consisting of different injury locations and unloading (preganglionic and postganglionic neurectomy,
disarticulation, and sham groups). The primary hypothesis is that the key driver in BPBI bone deformity is the
mechanical environment due to impaired longitudinal growth of paralyzed muscle and altered active functional
loading beginning shortly after injury. The proposed work will further the parent research by investigating active
loading of the glenohumeral joint during functional gait in a rat model. Bone readily adapts to its mechanical
environment, so analysis of its organized microstructures would also provide insight to key mechanical drivers
of microstructural deficits. Supplement Aim 1. Determine how limb loading is altered during functional gait
following BPBI. Rationale: Spatiotemporal characteristics of gait are substantially and differentially altered
during walking in rats following pre- and postganglionic neurectomy. However, the forces experienced on each
limb at the ground and on the developing glenohumeral joint are unknown and are likely important drivers of
glenohumeral development. Supplement Aim 2. Determine how active limb loading during functional gait
drives morphological and microstructural changes in the glenoid. Rationale: Our unique co-simulation
computational model of glenohumeral growth and function has been used to directly relate specific deformity
and contracture features to isolated changes in passive muscle force, active range of motion, and biological
growth rate; however, actual limb usage and its mechanical relationship to bone material properties and
trabecular organization has not yet been explored. Altered gait and limb loading during walking and running after
neurectomy will be evaluated to explore how limb usage and loading is affected by BPBI. Spatiotemporal motion
data and ground contact forces will be recorded for each animal and compared among groups. Resultant gait
data will be integrated into the computational simulation of glenohumeral loading and adaptation during active
limb function following BPBI. Tissue properties will be validated using micro-computed tomography (micro-CT)
images of the internal bone density and microstructure of the scapula and humerus collected under the R01
project and used to identify the portion of bone response due to active loading. A micro-CT-based micro-scale
finite element model will provide tissue stress and yielding patterns to elucidate loading-driven adaptations in
trabecular organization. The proposed supplement work will advance the originally planned modeling approach
by including dynamic limb loads and new methods to actively predict bone material property changes and
trabecular organization adaptations over the time of limb development.
项目概要
臂丛神经出生损伤 (BPBI) 是一种神经肌肉损伤,会导致终身手臂损伤和
盂肱关节畸形,限制上肢活动。人们对此知之甚少
BPBI 后产后骨骼和肌肉生长的进展。家长补助金探索关键
畸形进展的驱动因素,包括发育时间线和由此产生的功能影响
由不同损伤部位和卸载组成的大鼠模型(节前和节后神经切除术,
离断组和假组)。主要假设是 BPBI 骨畸形的关键驱动因素是
由于瘫痪肌肉的纵向生长受损和主动功能改变而导致的机械环境
受伤后不久就开始负重。拟议的工作将通过调查积极的研究来进一步推进家长研究
大鼠模型功能性步态期间盂肱关节的负荷。骨骼很容易适应其力学
环境,因此对其有组织的微观结构的分析也将提供对关键机械驱动因素的洞察
微观结构缺陷。补充目标 1. 确定功能步态期间肢体负荷如何变化
遵循 BPBI。理由:步态的时空特征发生了显着且差异性的改变
节前和节后神经切除术后大鼠行走期间。然而,每个人所经历的力量
地面上的肢体和发育中的盂肱关节是未知的,并且可能是重要的驱动因素
盂肱发育。补充目标 2. 确定功能性步态期间的主动肢体负荷
驱动关节盂的形态和微观结构变化。理由:我们独特的联合仿真
盂肱生长和功能的计算模型已用于直接关联特定的畸形
和挛缩特征到被动肌力、主动运动范围和生物的孤立变化
增长率;然而,实际肢体的使用及其与骨材料特性的机械关系和
小梁组织尚未被探索。步行和跑步期间的步态和肢体负荷改变
将评估神经切除术,以探讨 BPBI 对肢体使用和负荷的影响。时空运动
将记录每只动物的数据和地面接触力并在各组之间进行比较。结果步态
数据将被整合到活动期间盂肱负荷和适应的计算模拟中
BPBI 后的肢体功能。将使用微型计算机断层扫描 (micro-CT) 验证组织特性
R01下采集的肩胛骨和肱骨的内部骨密度和显微结构图像
项目并用于识别由于主动负载而引起的骨骼响应部分。基于显微CT的微型尺度
有限元模型将提供组织应力和屈服模式,以阐明负载驱动的适应
小梁组织。拟议的补充工作将推进原计划的建模方法
通过包括动态肢体负载和新方法来主动预测骨材料特性的变化和
随着肢体发育时间的推移,小梁组织发生适应性变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacqueline H Cole其他文献
Jacqueline H Cole的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacqueline H Cole', 18)}}的其他基金
Development and Persistence of Tissue-Level Musculoskeletal Deformity Following Brachial Plexus Birth Injury
臂丛神经出生损伤后组织水平肌肉骨骼畸形的发展和持续
- 批准号:
10369619 - 财政年份:2021
- 资助金额:
$ 7.99万 - 项目类别:
Development and Persistence of Tissue-Level Musculoskeletal Deformity Following Brachial Plexus Birth Injury
臂丛神经出生损伤后组织水平肌肉骨骼畸形的发展和持续
- 批准号:
10585930 - 财政年份:2021
- 资助金额:
$ 7.99万 - 项目类别:
Fracture healing assessment by real-time and noninvasive Raman spectorscopy
通过实时、无创拉曼光谱评估骨折愈合情况
- 批准号:
7486400 - 财政年份:2008
- 资助金额:
$ 7.99万 - 项目类别:
Fracture healing assessment by real-time and noninvasive Raman spectorscopy
通过实时、无创拉曼光谱评估骨折愈合情况
- 批准号:
7637931 - 财政年份:2008
- 资助金额:
$ 7.99万 - 项目类别:
相似国自然基金
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
- 批准号:
10751099 - 财政年份:2023
- 资助金额:
$ 7.99万 - 项目类别:
Bionanomatrix coating to enhance antibacterial effects while reducing inflammation of knee joint implants
生物纳米基质涂层可增强抗菌效果,同时减少膝关节植入物的炎症
- 批准号:
10822220 - 财政年份:2023
- 资助金额:
$ 7.99万 - 项目类别:
The Conundrum of Absentee Receptors: Efficacy Potentiation Through Drug-Receptor Modulation
缺失受体的难题:通过药物受体调节增强功效
- 批准号:
10708018 - 财政年份:2022
- 资助金额:
$ 7.99万 - 项目类别:
Enabling Studies for the Treatment of Frozen Shoulder Using Relaxin
使用松弛素治疗肩周炎的研究
- 批准号:
10448418 - 财政年份:2021
- 资助金额:
$ 7.99万 - 项目类别: