Understanding Cell-type Vulnerability and Oxidative Stress Pathology in Parkinson's Disease Using Isogenic Human Dopaminergic Neurons
使用同基因人类多巴胺能神经元了解帕金森病的细胞类型脆弱性和氧化应激病理学
基本信息
- 批准号:10841881
- 负责人:
- 金额:$ 13.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAmericanAstrocytesAutopsyBiological ModelsBrainCellsDNA DamageDiagnosisDiseaseDopamineEndothelial CellsGenesGeneticGoalsHumanImage AnalysisIndividualInheritedLearningLipidsMeasuresMetabolismMicroscopyMidbrain structureMissionModelingMolecularMonitorNerve DegenerationNeuronsOligodendrogliaOxidative StressPARK7 geneParkinParkinson DiseasePathologicPathologyPlayPopulationProteinsPublic HealthReactive Oxygen SpeciesResearchResearch ProposalsRoleScientistSignal TransductionSignaling MoleculeSystemTechniquesTestingTherapeuticTissue MicroarrayTrainingUnited States National Institutes of HealthVariantbrain cellbrain tissuecareercell typedopaminergic neuronimprovedinduced pluripotent stem cellinnovationloss of functionloss of function mutationmolecular subtypesmotor impairmentneuron lossneuronal survivalnovelpatient stratificationproteostasisrisk predictionrisk variantskillssporadic Parkinson&aposs Diseasestem cellsthree dimensional cell culture
项目摘要
Project Summary: Understanding cell-type vulnerability and manipulating oxidative stress pathology
in Parkinson’s Disease using isogenic human dopaminergic neurons
About one million Americans live with Parkinson’s Disease (PD) which is characterized by progressive loss of
subpopulations of nigral midbrain dopaminergic neurons (DNs), leading to motor impairment and other
debilitating conditions. Familial PD genes show broad expression in the brain and neurodegeneration in PD can
be widespread; however, it is unclear why nigral DNs show such exquisite vulnerability compared to other cell
types, including other DN populations. Post-mortem studies suggest that oxidative stress (OS) contributes to
familial and sporadic PD. Reactive oxygen species (ROS) are important signaling molecules but high levels of
intracellular ROS will damage DNA, lipids and proteins. High energy needs and dopamine metabolism may
explain increased ROS, OS and the unique vulnerability of nigral DNs but human-relevant model systems are
required to rigorously test this hypothesis. There is an urgent need to develop experimental systems to better
understand nigral DN vulnerability, identify novel disease-relevant signaling mechanisms, and improve molecular
subtyping and patient stratification. In this supplement we propose to use a recent model that we have developed
and apply it to dissect pathological cell-type-specific mechanisms. We have recently developed a 3D culture
model integrating induced pluripotent stem cells (iPSCs) derived individual cell types (neurons, astrocytes,
oligodendrocytes, endothelial cells to create brain tissue chips. This approach allows us to integrate cells with
different genetic backgrounds. To this end, we aim to investigate the cell type specific effects of familial PD
genes PARKIN and DJ1 to better understand the role each brain cell type plays to contribute to PD pathology.
Specifically, we aim to determine the impact of PARKIN variants in each cell type on oxidative stress in human
brain tissue by creating brain tissue chips with PARKIN loss of function mutations in different cell types. We will
monitor oxidative stress in the dopaminergic neurons. Additionally, we aim to determine the impact of DJ1 risk
variants in each cell type on proteostasis and dopaminergic neuron survival by introducing different cell types
with DJ1 loss of function variants. We will measure proteolytic activity and neuronal death as a result of DJ1 loss
of function in different cell types. Applying the 3D tissue chip system to PD will allow us to identify the role of
each cell type in contributing to PD pathology.
项目摘要:了解细胞类型的脆弱性和操纵氧化应激病理
在帕金森氏病中,使用异源性人多巴胺能神经元
约有一百万美国人患有帕金森氏病(PD),其特征是逐渐丧失
ni中脑多巴胺能神经元(DNS)的亚群,导致运动障碍和其他
使人衰弱的条件。家族性PD基因在大脑中显示广泛的表达,而PD中的神经退行性可以
宽度;但是,目前尚不清楚为什么nigral DNS与其他单元相比显示出如此独特的脆弱性
类型,包括其他DN人群。验尸研究表明,氧化应激(OS)有助于
家族和零星的PD。活性氧(ROS)是重要的信号分子,但高水平
细胞内ROS会损害DNA,脂质和蛋白质。高能量需求和多巴胺代谢可能
解释增加的ROS,OS和Nigral DNS的独特脆弱性,但与人相关的模型系统是
需要严格检验该假设。迫切需要开发实验系统以改善
了解nigral DN脆弱性,确定新型疾病的信号传导机制并改善分子
亚型和患者分层。在这种补充中,我们建议使用我们开发的最新模型
并将其应用于病理细胞类型特异性机制。我们最近开发了3D文化
集成诱导多能干细胞(IPSC)衍生的单个细胞类型(神经元,星形胶质细胞,,
少突胶质细胞,内皮细胞产生脑组织片。这种方法使我们能够将细胞与
不同的遗传背景。为此,我们旨在研究家族PD的细胞类型特定效果
基因Parkin和DJ1可以更好地理解每种脑细胞类型有助于PD病理学的作用。
具体而言,我们旨在确定parkin变体在每种细胞类型中对人类氧化应激的影响
通过在不同细胞类型中产生功能突变的脑组织芯片来形成脑组织。我们将
监测多巴胺能神经元中的氧化应激。此外,我们旨在确定DJ1风险的影响
通过引入不同的细胞类型,每种细胞类型的变体和多巴胺能神经元生存
与DJ1丧失功能变体的丧失。由于DJ1损失,我们将测量蛋白水解活性和神经元死亡
在不同的单元格类型中的功能。将3D组织芯片系统应用于PD将使我们能够确定
每种细胞类型有助于PD病理学。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling the Blood-Brain Barrier Using Human-Induced Pluripotent Stem Cells.
使用人类诱导的多能干细胞模拟血脑屏障。
- DOI:10.1007/978-1-0716-3287-1_11
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mesentier-Louro,LouiseA;Suhy,Natalie;Broekaart,Diede;Bula,Michael;Pereira,AnaC;Blanchard,JoelW
- 通讯作者:Blanchard,JoelW
High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells.
- DOI:10.1016/j.xpro.2021.100463
- 发表时间:2021-06-18
- 期刊:
- 影响因子:0
- 作者:Sarrafha L;Parfitt GM;Reyes R;Goldman C;Coccia E;Kareva T;Ahfeldt T
- 通讯作者:Ahfeldt T
Towards physiologically relevant human pluripotent stem cell (hPSC) models of Parkinson's disease.
- DOI:10.1186/s13287-021-02326-5
- 发表时间:2021-04-29
- 期刊:
- 影响因子:7.5
- 作者:Coccia E;Ahfeldt T
- 通讯作者:Ahfeldt T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel William Blanchard其他文献
Joel William Blanchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel William Blanchard', 18)}}的其他基金
Understanding cell-type vulnerability and oxidative stress pathology in Parkinson's Disease using isogenic human dopaminergic neurons
使用同基因人类多巴胺能神经元了解帕金森病的细胞类型脆弱性和氧化应激病理学
- 批准号:
10247522 - 财政年份:2020
- 资助金额:
$ 13.47万 - 项目类别:
Understanding cell-type vulnerability and oxidative stress pathology in Parkinson's Disease using isogenic human dopaminergic neurons
使用同基因人类多巴胺能神经元了解帕金森病的细胞类型脆弱性和氧化应激病理学
- 批准号:
10458745 - 财政年份:2020
- 资助金额:
$ 13.47万 - 项目类别:
Understanding Cell-type Vulnerability and Oxidative Stress Pathology in Parkinson's Disease Using Isogenic Human Dopaminergic Neurons
使用同基因人类多巴胺能神经元了解帕金森病的细胞类型脆弱性和氧化应激病理学
- 批准号:
10682394 - 财政年份:2020
- 资助金额:
$ 13.47万 - 项目类别:
Construction of an integrated immune - vascular brain - chip as a platform for the study, drug screening, and treatments of Alzheimer's disease
构建集成免疫血管脑芯片作为阿尔茨海默病研究、药物筛选和治疗的平台
- 批准号:
9894186 - 财政年份:2019
- 资助金额:
$ 13.47万 - 项目类别:
Construction of an Integrated Immune - Vascular Brain - Chip as a Platform for the Study, Drug Screening, and Treatments of Alzheimer's Disease
构建集成免疫血管脑芯片作为阿尔茨海默病研究、药物筛选和治疗的平台
- 批准号:
10622543 - 财政年份:2019
- 资助金额:
$ 13.47万 - 项目类别:
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 13.47万 - 项目类别:
Discovery of therapeutic nanobodies targeting brain TNF-α for the treatment of Alzheimer Disease
发现针对大脑 TNF-α 的治疗性纳米抗体用于治疗阿尔茨海默病
- 批准号:
10697218 - 财政年份:2023
- 资助金额:
$ 13.47万 - 项目类别:
Mature brain organoid platform for therapeutic screening for ALS/FTD
用于 ALS/FTD 治疗筛选的成熟脑类器官平台
- 批准号:
10759584 - 财政年份:2023
- 资助金额:
$ 13.47万 - 项目类别:
Novel patient-derived 3D platform for detecting TDP-43 proteinopathy and associated biomarkers for ALS/FTD
用于检测 TDP-43 蛋白病和 ALS/FTD 相关生物标志物的新型患者衍生 3D 平台
- 批准号:
10395206 - 财政年份:2022
- 资助金额:
$ 13.47万 - 项目类别:
Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration
用于治疗青光眼神经变性的视神经头 (ONH) 芯片
- 批准号:
10439107 - 财政年份:2022
- 资助金额:
$ 13.47万 - 项目类别: