Uncovering the role of inppl1a in notochord vacuolation and the development of a straight body axis.
揭示 inppl1a 在脊索空泡化和直体轴发育中的作用。
基本信息
- 批准号:10826125
- 负责人:
- 金额:$ 4.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2026-09-20
- 项目状态:未结题
- 来源:
- 关键词:AdultAnteriorAtlasesBasement membraneBiogenesisBiologyBiotinylationBirthBone DiseasesCandidate Disease GeneCell SizeCell VolumesCell membraneCell secretionCellsChestChordataChordomaClustered Regularly Interspaced Short Palindromic RepeatsCytoplasmDatabasesDefectDepositionDevelopmentDiameterDiseaseEmbryoEpitheliumExtracellular MatrixFellowshipFertilizationFractionationFutureGTPase-Activating ProteinsGenesGeneticGenetic ScreeningHealthHumanINPPL1 geneImage AnalysisInositolInvestigationKnowledgeLabelLengthLesionLinkLocomotionMapsMass Spectrum AnalysisMechanical StressMechanicsMembraneModernizationMolecular GeneticsMutationOpticsPatternPhosphatidylinositolsPhosphoric Monoester HydrolasesPhysiologic calcificationPlasma CellsPolyphosphatesPredispositionProcessProteinsProteomicsResourcesRodRoleSeveritiesSiblingsSignal PathwaySkeletal DevelopmentSpinal CurvaturesStructureSwellingSwimmingTechniquesTestingThickTimeTissuesTretinoinVacuoleVertebral BoneVertebral columnVertebratesVesicleViscosityWorkZebrafishbonecartilaginousembryo tissuegenetic approachin vivointervertebral disk degenerationlate endosomeloss of functionmalformationmarker transgenesmechanical propertiesmineralizationmouse modelmutantnotochordnotochord developmentopsismodysplasiapharmacologicprematurepressureprotein complexquantitative imagingscoliosisskeletalskeletal disorderspine bone structuretrafficking
项目摘要
PROJECT SUMMARY
The notochord is a highly conserved developmental tissue that extends along the anterior-posterior axis of all
chordates, including humans. It is composed of inner vacuolated cells surrounded by an external layer of
sheath cells that secrete a thick extracellular matrix. Inflation of the vacuolated cells within the restrictive
sheath creates a pressurized rod that supports locomotion in chordates and ultimately patterns the spine of
vertebrates. As such, the development of the notochord and spine are intimately linked, and defects in the
formation of notochord cells have been linked to scoliosis and vertebral malformations. The notochord is a
difficult tissue to study in mouse models since it is already replaced by the spine at the time of birth. In
contrast, the external development and optical transparency of zebrafish make them suitable for investigating
processes involved in notochord development and maturation. This proposal will use quantitative image
analysis, zebrafish genetics, and modern proteomics approaches to define the role of the inositol
polyphosphate phosphatase-like 1a (inppl1a) gene in notochord and spine development. Mutations in this gene
cause early notochord defects and thoracic scoliosis in zebrafish. In this fellowship proposal, I will test the
hypothesis that inppl1a regulates notochord vacuole inflation and, ultimately, the mechanical stability of the
notochord with three Specific Aims. In Aim 1, I will determine the role of inppl1a in notochord vacuolation by
quantifying changes in notochord cell size and vacuole inflation (1.1) and internal vacuole membrane dynamics
(1.2). I will also define the temporal and spatial requirement of inppl1a during notochord development using
pharmacological and molecular-genetic approaches (1.3). In Aim 2, I will evaluate the mechanical properties of
inppl1a mutant notochords by manipulating mechanical stress (2.1) and vertebral bone mineralization (2.2-2.3)
during development. Finally, in Aim 3, I will define the protein interactors of Inppl1a in notochord and spine
development. I will use a candidate gene approach (3.1) and a proximity-dependent labeling strategy (3.2) to
identify additional proteins required for Inppl1a-dependent notochord vacuole inflation. To supplement these
approaches, I will also use modern proteomics techniques to build a comprehensive atlas of the notochord
protein interaction network (3.3). In doing so, I will build an invaluable resource for future investigation of
proteins involved in notochord development. Altogether, the work in this proposal will add to the knowledge of
how notochord cells vacuolate and will ultimately benefit our understanding of human skeletal health and
disease. Although the notochord is considered an embryonic tissue, it has been implicated in adult diseases,
including intervertebral disc degeneration and chordoma. Additionally, mutations in INPPL1 cause the rare
endochondral bone disorder, Opsismodysplasia. Therefore, this work in zebrafish will be significant because it
will likely reveal a conserved role for inppl1a/INPPL1 in skeletal development and disease.
项目概要
脊索是一种高度保守的发育组织,沿着所有脊索的前后轴延伸
脊索动物,包括人类。它由内层空泡细胞组成,外层是空泡细胞。
分泌厚厚的细胞外基质的鞘细胞。限制性内空泡细胞的膨胀
鞘形成一个加压杆,支持脊索动物的运动,并最终塑造脊索动物的脊柱
脊椎动物。因此,脊索和脊柱的发育是密切相关的,脊索和脊柱的缺陷
脊索细胞的形成与脊柱侧凸和椎骨畸形有关。脊索是一个
在小鼠模型中研究很难的组织,因为它在出生时就已经被脊柱所取代。在
相比之下,斑马鱼的外部发育和光学透明度使它们适合研究
涉及脊索发育和成熟的过程。该提案将使用定量图像
分析、斑马鱼遗传学和现代蛋白质组学方法来定义肌醇的作用
多磷酸磷酸酶样 1a (inppl1a) 基因在脊索和脊柱发育中的作用。该基因突变
导致斑马鱼早期脊索缺陷和胸椎脊柱侧凸。在这个奖学金提案中,我将测试
假设 inppl1a 调节脊索液泡膨胀,并最终调节脊索液泡的机械稳定性
脊索具有三个具体目标。在目标 1 中,我将通过以下方式确定 inppl1a 在脊索空泡化中的作用
量化脊索细胞大小和液泡膨胀 (1.1) 以及内部液泡膜动力学的变化
(1.2)。我还将使用以下方法定义脊索发育过程中 inppl1a 的时间和空间要求
药理学和分子遗传学方法(1.3)。在目标 2 中,我将评估机械性能
inppl1a 突变脊索通过操纵机械应力 (2.1) 和椎骨矿化 (2.2-2.3)
在开发过程中。最后,在目标 3 中,我将定义脊索和脊柱中 Inppl1a 的蛋白质相互作用因子
发展。我将使用候选基因方法(3.1)和邻近依赖标记策略(3.2)来
确定 Inppl1a 依赖性脊索液泡膨胀所需的其他蛋白质。为了补充这些
方法,我还将使用现代蛋白质组学技术来构建脊索的综合图谱
蛋白质相互作用网络(3.3)。通过这样做,我将为未来的调查建立宝贵的资源
参与脊索发育的蛋白质。总而言之,本提案中的工作将增加以下方面的知识:
脊索细胞如何形成空泡,最终将有利于我们对人类骨骼健康的理解
疾病。尽管脊索被认为是胚胎组织,但它与成人疾病有关,
包括椎间盘退变和脊索瘤。此外,INPPL1 的突变会导致罕见的
软骨内骨疾病,Opsismodysplasia。因此,这项针对斑马鱼的工作将具有重要意义,因为它
可能会揭示 inppl1a/INPPL1 在骨骼发育和疾病中的保守作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittney Voigt其他文献
Brittney Voigt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
蚕丝和家蚕前部丝腺纺丝液的原位超微结构研究
- 批准号:32302816
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑室旁核前部TGR5在慢性应激诱导的焦虑样行为中的作用及机制
- 批准号:82373860
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
家蚕前部丝腺特异表皮蛋白在角质层内膜构建及蚕丝纤维化中的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
谷氨酸能系统调节的前部岛叶皮层神经振荡在针刺缓解慢性疼痛中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模态影像学的视乳头区域微循环灌注评估及NAION发病机制研究
- 批准号:81800840
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 4.1万 - 项目类别:
Walk this Way: Physical Activity and Walking Biomechanics Lead to Early Knee OA Symptoms and Ultrasound-Detected Structural Pathology after ACL Reconstruction
以此方式行走:体力活动和行走生物力学导致 ACL 重建后早期膝关节 OA 症状和超声检测的结构病理学
- 批准号:
10506932 - 财政年份:2022
- 资助金额:
$ 4.1万 - 项目类别:
Defining the Cellular Morphogenic Behaviors that Shape the Developing Heart
定义塑造心脏发育的细胞形态发生行为
- 批准号:
10390060 - 财政年份:2022
- 资助金额:
$ 4.1万 - 项目类别:
Fundamental Mechanisms Causing Pituitary Stem Cell Aging in Mice and Humans
导致小鼠和人类垂体干细胞衰老的基本机制
- 批准号:
10369324 - 财政年份:2022
- 资助金额:
$ 4.1万 - 项目类别:
Defining the Cellular Morphogenic Behaviors that Shape the Developing Heart
定义塑造心脏发育的细胞形态发生行为
- 批准号:
10651614 - 财政年份:2022
- 资助金额:
$ 4.1万 - 项目类别: