Uncovering the role of inppl1a in notochord vacuolation and the development of a straight body axis.
揭示 inppl1a 在脊索空泡化和直体轴发育中的作用。
基本信息
- 批准号:10826125
- 负责人:
- 金额:$ 4.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2026-09-20
- 项目状态:未结题
- 来源:
- 关键词:AdultAnteriorAtlasesBasement membraneBiogenesisBiologyBiotinylationBirthBone DiseasesCandidate Disease GeneCell SizeCell VolumesCell membraneCell secretionCellsChestChordataChordomaClustered Regularly Interspaced Short Palindromic RepeatsCytoplasmDatabasesDefectDepositionDevelopmentDiameterDiseaseEmbryoEpitheliumExtracellular MatrixFellowshipFertilizationFractionationFutureGTPase-Activating ProteinsGenesGeneticGenetic ScreeningHealthHumanINPPL1 geneImage AnalysisInositolInvestigationKnowledgeLabelLengthLesionLinkLocomotionMapsMass Spectrum AnalysisMechanical StressMechanicsMembraneModernizationMolecular GeneticsMutationOpticsPatternPhosphatidylinositolsPhosphoric Monoester HydrolasesPhysiologic calcificationPlasma CellsPolyphosphatesPredispositionProcessProteinsProteomicsResourcesRodRoleSeveritiesSiblingsSignal PathwaySkeletal DevelopmentSpinal CurvaturesStructureSwellingSwimmingTechniquesTestingThickTimeTissuesTretinoinVacuoleVertebral BoneVertebral columnVertebratesVesicleViscosityWorkZebrafishbonecartilaginousembryo tissuegenetic approachin vivointervertebral disk degenerationlate endosomeloss of functionmalformationmarker transgenesmechanical propertiesmineralizationmouse modelmutantnotochordnotochord developmentopsismodysplasiapharmacologicprematurepressureprotein complexquantitative imagingscoliosisskeletalskeletal disorderspine bone structuretrafficking
项目摘要
PROJECT SUMMARY
The notochord is a highly conserved developmental tissue that extends along the anterior-posterior axis of all
chordates, including humans. It is composed of inner vacuolated cells surrounded by an external layer of
sheath cells that secrete a thick extracellular matrix. Inflation of the vacuolated cells within the restrictive
sheath creates a pressurized rod that supports locomotion in chordates and ultimately patterns the spine of
vertebrates. As such, the development of the notochord and spine are intimately linked, and defects in the
formation of notochord cells have been linked to scoliosis and vertebral malformations. The notochord is a
difficult tissue to study in mouse models since it is already replaced by the spine at the time of birth. In
contrast, the external development and optical transparency of zebrafish make them suitable for investigating
processes involved in notochord development and maturation. This proposal will use quantitative image
analysis, zebrafish genetics, and modern proteomics approaches to define the role of the inositol
polyphosphate phosphatase-like 1a (inppl1a) gene in notochord and spine development. Mutations in this gene
cause early notochord defects and thoracic scoliosis in zebrafish. In this fellowship proposal, I will test the
hypothesis that inppl1a regulates notochord vacuole inflation and, ultimately, the mechanical stability of the
notochord with three Specific Aims. In Aim 1, I will determine the role of inppl1a in notochord vacuolation by
quantifying changes in notochord cell size and vacuole inflation (1.1) and internal vacuole membrane dynamics
(1.2). I will also define the temporal and spatial requirement of inppl1a during notochord development using
pharmacological and molecular-genetic approaches (1.3). In Aim 2, I will evaluate the mechanical properties of
inppl1a mutant notochords by manipulating mechanical stress (2.1) and vertebral bone mineralization (2.2-2.3)
during development. Finally, in Aim 3, I will define the protein interactors of Inppl1a in notochord and spine
development. I will use a candidate gene approach (3.1) and a proximity-dependent labeling strategy (3.2) to
identify additional proteins required for Inppl1a-dependent notochord vacuole inflation. To supplement these
approaches, I will also use modern proteomics techniques to build a comprehensive atlas of the notochord
protein interaction network (3.3). In doing so, I will build an invaluable resource for future investigation of
proteins involved in notochord development. Altogether, the work in this proposal will add to the knowledge of
how notochord cells vacuolate and will ultimately benefit our understanding of human skeletal health and
disease. Although the notochord is considered an embryonic tissue, it has been implicated in adult diseases,
including intervertebral disc degeneration and chordoma. Additionally, mutations in INPPL1 cause the rare
endochondral bone disorder, Opsismodysplasia. Therefore, this work in zebrafish will be significant because it
will likely reveal a conserved role for inppl1a/INPPL1 in skeletal development and disease.
项目摘要
脊索是一种高度保守的发育组织,沿着所有的前后轴延伸
弦,包括人类。它由内部吸尘单元组成,周围是
分泌厚细胞外基质的鞘细胞。限制性细胞的充气
鞘形成一个加压杆,该杆支持弦弦中的运动,并最终模式为
脊椎动物。因此,脊索和脊柱的发展与
脊索细胞的形成与脊柱侧弯和椎骨畸形有关。脊索是一个
在小鼠模型中很难研究的组织,因为它在出生时已经被脊柱取代。在
对比,斑马鱼的外部发展和光学透明度使它们适合研究
脊索发展和成熟涉及的过程。该建议将使用定量图像
分析,斑马鱼遗传学和现代蛋白质组学方法来定义肌醇的作用
脊索和脊柱发育中的多磷酸磷酸酶样1a(Inppl1a)基因。该基因的突变
引起斑马鱼的早期脊索缺陷和胸脊柱侧弯。在此奖学金建议中,我将测试
INPPL1A调节脊索液泡通胀的假设,最终是机械稳定性
具有三个特定目标的脊索。在AIM 1中,我将通过通过
量化脊索细胞大小和液泡膨胀(1.1)和内部液泡膜动力学的变化
(1.2)。我还将在努力训练期间定义inppl1a的时间和空间要求
药理和分子遗传学方法(1.3)。在AIM 2中,我将评估
通过操纵机械应力(2.1)和椎骨矿化(2.2-2.3),Inppl1a突变体脊索
在开发过程中。最后,在AIM 3中,我将定义notochord和脊柱中Inppl1a的蛋白质相互作用者
发展。我将使用候选基因方法(3.1)和依赖性标签策略(3.2)
确定依赖Inppl1a依赖性的努力液膨胀所需的其他蛋白质。补充这些
方法,我还将使用现代蛋白质组学技术来构建Notochord的全面地图集
蛋白质相互作用网络(3.3)。这样,我将建立一个宝贵的资源
参与脊索发展的蛋白质。总之,该提案中的工作将增加
努力细胞如何空泡,最终将有益于我们对人类骨骼健康的理解和
疾病。尽管脊索被认为是胚胎组织,但它与成人疾病有关
包括椎间盘变性和脊索瘤。另外,Inppl1中的突变导致罕见
软骨内骨障碍,Opsismodyplasia。因此,斑马鱼中的这项工作将是重要的
可能会在骨骼发育和疾病中揭示INPPL1A/INPPL1的保守作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittney Voigt其他文献
Brittney Voigt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肝胆肿瘤治疗性溶瘤腺病毒疫苗的研制及其临床前应用性探索
- 批准号:82303776
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
莫氏细胞早期异常活化介导的前下托-齿状回环路构建在癫痫发生中的作用研究
- 批准号:82371458
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于MST4-YAP-MYC信号通路的慢痞消调控氧化磷酸化水平治疗胃癌前病变的机制研究
- 批准号:82374292
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CXCL12趋化CXCR4+/α-SMA+成骨前体细胞促进黄韧带骨化的机制研究
- 批准号:82302745
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紫外光解中间体激活荧光构建亚硝胺及其前体物的新方法和机理研究
- 批准号:82373631
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 4.1万 - 项目类别:
Walk this Way: Physical Activity and Walking Biomechanics Lead to Early Knee OA Symptoms and Ultrasound-Detected Structural Pathology after ACL Reconstruction
以此方式行走:体力活动和行走生物力学导致 ACL 重建后早期膝关节 OA 症状和超声检测的结构病理学
- 批准号:
10506932 - 财政年份:2022
- 资助金额:
$ 4.1万 - 项目类别:
Defining the Cellular Morphogenic Behaviors that Shape the Developing Heart
定义塑造心脏发育的细胞形态发生行为
- 批准号:
10390060 - 财政年份:2022
- 资助金额:
$ 4.1万 - 项目类别:
Fundamental Mechanisms Causing Pituitary Stem Cell Aging in Mice and Humans
导致小鼠和人类垂体干细胞衰老的基本机制
- 批准号:
10369324 - 财政年份:2022
- 资助金额:
$ 4.1万 - 项目类别:
Walk this Way: Physical Activity and Walking Biomechanics Lead to Early Knee OA Symptoms and Ultrasound-Detected Structural Pathology after ACL Reconstruction
以此方式行走:体力活动和行走生物力学导致 ACL 重建后早期膝关节 OA 症状和超声检测的结构病理学
- 批准号:
10670394 - 财政年份:2022
- 资助金额:
$ 4.1万 - 项目类别: