Mechanosensing and Mechanotransduction in the Endothelial Nucleus
内皮细胞核中的机械传感和机械转导
基本信息
- 批准号:10814132
- 负责人:
- 金额:$ 4.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-08 至 2025-09-07
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart,
which combined with the individual geometry of vessels further imposes oscillatory, disturbed, or laminar shear
stresses on endothelial cells. These hemodynamic forces dictate the phenotype and gene expression profile of
endothelial cells in different regions of the arterial tree making them athero-protective or athero-prone. Due to
the impact of distinct types of flow in the onset of vascular pathology, significant effort has been placed in
identifying mechanosensing proteins and transcriptional profiles linked to different types of shear stress. In
contrast, less emphasis has been given to how forces at the cell surface are transmitted to the nucleus,
impacting nuclear shape, nuclear pore function, and chromatin organization and integrity in the vasculature,
which is the focus of this application. I found that oscillatory and disturbed flow have a progressive deleterious
effect in nuclear shape, which is exacerbated by loss of vimentin. Based on this and other preliminary data, I
hypothesize that Vimentin is critical for maintaining nuclear shape and chromatin integrity in regions of oscillatory
and disturbed flow in the endothelium. Using endothelial cells in vitro for mechanistic studies and vimentin null
mice for in vivo validation, I will complete an in-depth characterization of changes in nuclear integrity and function
in dysmorphic nuclei associated with aging and loss of vimentin. I will begin with a detailed characterization of
nuclear shape, nuclear membrane integrity, and function (via analysis of nuclear-cytoplasmic transport) in ECs
under non-laminar flow both in vivo, in the aortic endothelium, and in vitro using live-cell imaging, and atomic
force microscopy. I also will characterize vimentin kinetics, including its post-translational modifications, under
non-laminar flow (Aim 1). To assess shifts in transcriptional and signaling networks, I will use scRNA sequencing
and proteomics to identify and validate the vimentin interactome. I will examine the consequence of vimentin
loss on proteins of the Linker of Nucleoskeleton to Cytoskeleton (LINC) complex which directly or indirectly
interact with vimentin and are involved in direct force transmission to the nucleus (Aim 2). Finally, I will evaluate
how loss of vimentin alters endothelial chromatin integrity and epigenetic states using ATAC-sequencing to
provide evidence of vimentin’s critical function in maintaining chromatin homeostasis in the vasculature (Aim 3).
Through the completion of this proposed work, I will significantly expand my toolkit of techniques, skills, and
concepts while actively contributing to clarify the impact of physical forces on the endothelial nucleus. I am also
looking forward to broadening my skills in working with large datasets including analysis, distillation of information
and deriving new questions. As part of this process, I will pursue several interactions and scientific connections
with centers and collaborators within and outside my institution that will contribute to the advancement and
completion of this work, my scientific training, and prepare me for the next stage of my career.
项目摘要/摘要
血管细胞不断受到与心脏的节奏活性相关的物理力,
结合血管的单个几何形状进一步不可能振荡,干扰或层状剪切
内皮细胞的应力。这些血液动力学决定了表型和基因表达谱
动脉树不同区域的内皮细胞使它们具有动脉粥样硬化或易动脉粥样硬化。由于
不同类型的流动在血管病理学开始时的影响,已将大量努力放在
识别与不同类型的剪切应力相关的机械感应蛋白和转录曲线。在
对比,较少的重点是如何将细胞表面的力传递到核,
影响核形状,核孔功能和染色质组织以及脉管系统中的完整性,
这是此应用程序的重点。我发现振荡和干扰的流动具有渐进的有害性
核形状的效果会因波形蛋白的流失而加剧。基于此和其他初步数据,我
假设波形蛋白对于在振荡性区域保持核形状和染色质完整性至关重要
并在森植物中流动干扰。在体外使用Hothotherium细胞进行机械研究和波形蛋白null
用于体内验证的小鼠,我将完成核完整性和功能变化的深入表征
与衰老和波形蛋白丧失相关的营养不良核中。我将从详细的表征开始
核形状,核膜完整性和功能(通过EC中的核胞质转运分析)
在非晶状体流动下,在体内,主动脉内皮中以及使用活细胞成像和原子化的体外体外
力显微镜。我还将表征波形蛋白动力学,包括其后翻译后修饰,
非线中流动(目标1)。为了评估转录和信号网络的变化,我将使用SCRNA测序
和蛋白质组学以识别和验证波形蛋白相互作用组。我将研究波形蛋白的后果
直接或间接的细胞骨架(LINC)复合物的核骨骼接头蛋白质损失
与波形蛋白相互作用,并参与向核直接传播(AIM 2)。最后,我会评估
波形蛋白的损失如何使用ATAC序列改变内皮染色质完整性和表观遗传状态
提供波形蛋白在维持脉管系统中染色质稳态方面的关键功能的证据(AIM 3)。
通过完成这项拟议的工作,我将大大扩展我的技术,技能和技能工具包
概念在积极促进阐明物理力对内皮核us的影响的同时。我也是
期待扩大我与大型数据集合作的技能,包括分析,信息蒸馏
并提出新问题。作为此过程的一部分,我将进行几个互动和科学联系
在我机构内外的中心和合作者将有助于进步和
完成这项工作,我的科学培训,并为我的职业生涯下一个阶段做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Jocelynda Salvado...的其他基金
Mechanosensing and Mechanotransduction in the Endothelial Nucleus
内皮细胞核中的机械传感和机械转导
- 批准号:1053621510536215
- 财政年份:2022
- 资助金额:$ 4.3万$ 4.3万
- 项目类别:
相似海外基金
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:1071844810718448
- 财政年份:2023
- 资助金额:$ 4.3万$ 4.3万
- 项目类别:
Fibrosis, inflammation, and osteophyte formation in post-traumatic osteoarthritis
创伤后骨关节炎中的纤维化、炎症和骨赘形成
- 批准号:1057031510570315
- 财政年份:2023
- 资助金额:$ 4.3万$ 4.3万
- 项目类别:
Mechanosensing and Mechanotransduction in the Endothelial Nucleus
内皮细胞核中的机械传感和机械转导
- 批准号:1053621510536215
- 财政年份:2022
- 资助金额:$ 4.3万$ 4.3万
- 项目类别:
Control of Alcohol Responses by Actin-Regulating Genes
肌动蛋白调节基因控制酒精反应
- 批准号:1088934910889349
- 财政年份:2021
- 资助金额:$ 4.3万$ 4.3万
- 项目类别:
Control of Alcohol Responses by Actin-Regulating Genes
肌动蛋白调节基因控制酒精反应
- 批准号:1047192410471924
- 财政年份:2021
- 资助金额:$ 4.3万$ 4.3万
- 项目类别: