Deciphering the Transcriptional Regulatory Network Controlling RGC Axon Growth to Promote RGC Axon Regeneration and Cell Survival after Axonal Injury
破译控制 RGC 轴突生长的转录调控网络,以促进轴突损伤后 RGC 轴突再生和细胞存活
基本信息
- 批准号:10805158
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAxonBioinformaticsCell Death InductionCell SurvivalCentral Nervous SystemComplexCytoskeletonDataDevelopmentFrequenciesGene ExpressionGenesGlaucomaGrowth ConesInjuryMediatingMolecularMusNatural regenerationNerve CrushNeurodegenerative DisordersNeuronsNonmuscle Myosin Type IIAOptic NervePlayPopulationRecovery of FunctionRetinal Ganglion CellsRoleShapesTestingTimeaxon growthaxon injuryaxon regenerationdifferential expressiongene regulatory networkimprovedmultiple omicsnerve injuryneuron developmentnew therapeutic targetnon-muscle myosinoptic nerve regenerationprogramsregeneration modelresponsesingle-cell RNA sequencingspatiotemporaltranscription factortranscription regulatory networktranscriptome sequencing
项目摘要
Project Summary
In the past decade, restoring the intrinsic axon growth ability of mature neurons has received promising results
in promoting axon regeneration in the central nervous system (CNS). However, to date, axon regeneration that
leads to successful functional recovery in the CNS is still practically impossible, primarily due to the inadequate
distance of regeneration and the low number of regenerating axons. Previous studies and my preliminary data
have shown that many genes mediating the intrinsic axon growth ability are differentially expressed at different
developmental stages in neurons, indicating the altered gene expression level during neuronal maturation is an
important factor underlying the diminished intrinsic axon growth capacity. However, how the altered gene
expression program is regulated remains largely unknown. Transcription factors (TFs) play important roles during
neuronal development, shaping the spatiotemporal gene expression landscape to control cellular activities
including axon elongation. Thus, understanding the intricate transcriptional regulatory network orchestrating
axon growth during development is critical for solving the challenge of mammalian CNS axon regeneration. In
this proposed study, I will perform parallel RNA-seq and ATAC-seq of purified retinal ganglion cells (RGCs) at
multiple developmental time points, and use advanced integrative bioinformatics analysis to obtain a
comprehensive view of the transcriptional regulatory network controlling the axon elongation function during
RGC development, and identify key TFs that function as core regulators of axon growth. The identified TFs will
be functionally tested in mouse optic nerve regeneration model to verify if they play important roles in RGC axon
regeneration and cell survival. RGCs are comprised of more than forty molecular distinct subtypes. Different
RGC subtypes vary in vulnerability to axonal injury and have distinct responses toward gene modulations. I will
conduct single-cell RNA-seq (scRNA-seq) in RGCs 2 weeks after optic nerve crush from control and TF-
manipulated groups to acquire the frequency of each RGC subtype in the final population, and determine what
specific RGC subtypes are protected by the manipulation of a specific TF by comparing the frequencies of RGC
subtypes between control and TF-manipulated groups. TFs whose manipulations are found to improve survival
in distinct RGC subtypes will be combined in the next step to determine if simultaneously manipulating these
TFs could protect a wide variety of RGC subtypes from injury-induced cell death and induce synergistic
promoting effect on RGC axon regeneration. In addition, I will also combine the manipulations of these TFs with
non-muscle myosin IIA/B deletion in RGCs, which produces axon regeneration by modifying cytoskeletal
dynamics in the growth cone of injured axons, to find out if this combinatory approach could lead to
unprecedented long-distance axon regeneration.
项目摘要
在过去的十年中,恢复成熟神经元的固有轴突生长能力已获得有希望的结果
在促进中枢神经系统(CNS)中的轴突再生中。但是,迄今为止,轴突再生
导致中枢神经系统中成功的功能恢复实际上是不可能的,这主要是由于不足
再生的距离和再生轴突数量少。先前的研究和我的初步数据
已经表明,许多介导固有轴突生长能力的基因在不同的
神经元的发育阶段,表明神经元成熟过程中基因表达水平改变是一种
固有轴突生长能力下降的重要因素。但是,如何改变基因
表达程序受到调节,在很大程度上未知。转录因子(TFS)在期间起重要作用
神经元发育,塑造时空基因表达景观以控制细胞活性
包括轴突伸长。因此,了解复杂的转录调节网络编排
发育过程中的轴突生长对于解决哺乳动物CNS轴突再生的挑战至关重要。在
这项拟议的研究,我将在纯化的视网膜神经节细胞(RGC)上进行平行的RNA-seq和Atac-seq。
多个发育时间点,并使用先进的集成生物信息学分析来获得
在控制轴突伸长函数的转录调节网络的全面视图
RGC开发并确定功能充当轴突生长的核心调节剂的关键TF。确定的TF将
在鼠标视神经再生模型中进行功能测试,以验证它们是否在RGC轴突中起重要作用
再生和细胞存活。 RGC由40多个分子不同的亚型组成。不同的
RGC亚型因轴突损伤的脆弱性而异,并且对基因调节有明显的反应。我会
视神经挤压对照和TF-进行2周后,在RGC中进行单细胞RNA-SEQ(SCRNA-SEQ)
操纵群体以获取最终人群中每个RGC亚型的频率,并确定什么
特定的RGC亚型通过比较RGC的频率来保护特定TF的保护
对照组和TF操纵组之间的亚型。发现操纵可以改善生存的TF
在不同的RGC亚型中,将在下一步中合并,以确定是否同时操纵这些
TF可以保护各种RGC亚型免受损伤诱导的细胞死亡的影响并诱导协同作用
促进对RGC轴突再生的影响。此外,我还将将这些TF的操作与
RGC中的非肌肉肌球蛋白IIA/B缺失,通过修饰细胞骨架来产生轴突再生
受伤轴突生长锥的动力学,以找出这种组合方法是否会导致
前所未有的长距离轴突再生。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain.
- DOI:10.1016/j.neuron.2021.10.019
- 发表时间:2022-01-19
- 期刊:
- 影响因子:16.2
- 作者:Zheng Q;Xie W;Lückemeyer DD;Lay M;Wang XW;Dong X;Limjunyawong N;Ye Y;Zhou FQ;Strong JA;Zhang JM;Dong X
- 通讯作者:Dong X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuewei Wang其他文献
Xuewei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuewei Wang', 18)}}的其他基金
Antibacterial and Antithrombotic Catheter Lock Solutions Based on Controlled Release of Nitric Oxide
基于一氧化氮控制释放的抗菌和抗血栓导管锁解决方案
- 批准号:
10634183 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Self-calibrated ionophore-based ion-selective electrodes for at-home measurements of blood electrolytes
用于家庭测量血液电解质的自校准离子载体离子选择电极
- 批准号:
10592523 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Deciphering the Transcriptional Regulatory Network Controlling RGC Axon Growth to Promote RGC Axon Regeneration and Cell Survival after Axonal Injury
破译控制 RGC 轴突生长的转录调控网络,以促进轴突损伤后 RGC 轴突再生和细胞存活
- 批准号:
10222710 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Deciphering the Transcriptional Regulatory Network Controlling RGC Axon Growth to Promote RGC Axon Regeneration and Cell Survival after Axonal Injury
破译控制 RGC 轴突生长的转录调控网络,以促进轴突损伤后 RGC 轴突再生和细胞存活
- 批准号:
10680357 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Deciphering the Transcriptional Regulatory Network Controlling RGC Axon Growth to Promote RGC Axon Regeneration and Cell Survival after Axonal Injury
破译控制 RGC 轴突生长的转录调控网络,以促进轴突损伤后 RGC 轴突再生和细胞存活
- 批准号:
10038926 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
相似国自然基金
帕金森病轴突损伤中组蛋白乳酸化的作用及机制研究
- 批准号:82301604
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
施旺细胞-神经元乳酸代谢稳态通过蛋白质乳酸化调控轴突再生的作用研究
- 批准号:32300648
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
- 批准号:82360337
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
异丙酚促进STX3/PTEN介导DG-Glu能神经元轴突发生提高发育脑认知功能的机制研究
- 批准号:82301354
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Mical3调控轴突起始段Tau蛋白弥散屏障重塑在慢性创伤性脑病中的作用及机制研究
- 批准号:82371381
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Assessing how ocular surface nerves, immune cells, and epithelial cells communicate to encourage neuro-immune homeostasis
评估眼表神经、免疫细胞和上皮细胞如何沟通以促进神经免疫稳态
- 批准号:
10595234 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Interrogation and Modulation of the Epigenome after Prenatal Hypoxic Brain Injury
产前缺氧性脑损伤后表观基因组的询问和调节
- 批准号:
10595624 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Assessing how ocular surface nerves, immune cells, and epithelial cells communicate to encourage neuro-immune homeostasis
评估眼表神经、免疫细胞和上皮细胞如何沟通以促进神经免疫稳态
- 批准号:
10707204 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别: